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ABSTRACT 
 
 

Four different laser-based techniques were applied to study physical and chemical 

characteristics of biomolecules and dye molecules.  These techniques are hole burning 

spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman 

spectroscopy and laser-induced fluorescence microscopy. 

Results from hole burning and single molecule spectroscopy suggested that two 

antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 

6803 are connected by effective energy transfer and the corresponding energy transfer 

time is ~6 ps.  In addition, results from hole burning spectroscopy indicated that the 

chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. 

Direct observation of vibrational peaks and evolution of coumarin 153 in the 

electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-

resolved coherent anti-Stokes Raman spectroscopy.  In three different solvents, methanol, 

acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group 

exhibits different relaxation dynamics. 

Laser-induced fluorescence microscopy, along with the biomimetic containers—

liposomes, allows the measurement of the enzymatic activity of individual alkaline 

phosphatase from bovine intestinal mucosa without potential interferences from glass 

surfaces.  The result showed a wide distribution of the enzyme reactivity.  Protein 

structural variation is one of the major reasons that are responsible for this highly 

heterogeneous behavior.  
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CHAPTER 1. GENERAL INTRODUCTION 

 

Overview 

 
The optical detection and spectroscopy of fluorescent molecules has become a 

fundamental and versatile tool in research of physical, chemical and biological problems.  

Specifically, site-selective excitation and line-narrowing techniques, which probe only a 

subset of impurity molecules and provide more informative and sensitive material response, 

have been of particular interest.  For example, the study of chlorophylls by hole burning 

spectroscopy sheds light on the understanding of pathways of complicated energy and 

charge transfer processes in photosynthesis.1-18   Hole burning properties of rhodamine 800 

molecules indicate differences between carcinoma cells and normal cells.19-21  Various line-

narrowing techniques can be used to probe molecular properties.22, 23  Among them, single 

molecule spectroscopy is the ultimate line-narrowing technique which allows the study of 

exactly one single molecule and uncovers individual molecular characteristics hidden under 

the ensemble average.24-41  On the other hand, the advancement of time-domain techniques 

has allowed researchers to study molecular dynamics within femtoseconds, which pertains 

to the time scale of making and breaking of chemical bonds.42,43  For instance, the 

dynamics of intramolecular vibrational energy redistribution can be monitored by using 

ultrafast pump-probe laser spectroscopy,42 and even the results of a chemical reaction with 

two different channels can be controlled by selective vibrational excitation.44  While the 

photophysical properties of single molecules are revealed by single molecule spectroscopy, 

the study of the reaction kinetics of individual biomolecules reactivity can lead to an 

understanding between structure and inherently heterogeneous reactivity of enzymes.45-52 
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In this dissertation, many different laser-based techniques are used to investigate 

molecular activity.  Hole burning and single molecule spectroscopy are used to study the 

energy transfer properties of the red antenna states of cyanobacterium photosystem I 

(CHAPTERS 2 & 3).  A variant of time-resolved coherent anti-Stokes Raman spectroscopy 

is used to monitor the evolution of vibrational modes of coumarin 153 in the electronic 

excited state (CHAPTER 4).  The last chapter of this dissertation presents a study of the 

reaction rates of individual alkaline phosphatase molecules in liposomes by laser-induced 

fluorescence and microscopy.  

 

Part I. 

Introduction to Hole Burning, Single Molecule Spectroscopy  

and Red Antenna States of Cyanobacterial Photosystem I 

 

The Lineshape of a Single Impurity Molecule in a Low Temperature Solid Matrix 

 
If temperature is absolute zero (0 K), the linewidth of electronic transition of a 

chromophore (impurity) in a solid state matrix, Γ(0), is given by:53 

 Γ(0) = 
)0(2

1
1τπc

 (I.1) 

where c is the speed of light and τ1(0) is the decay time of the excited state of the 

chromophore at 0 K.  At 0=T , the homogeneous linewidth is only a function of the 

excited state lifetime.  The homogeneous lineshape, also known as zero-phonon line (ZPL), 

is Lorentzian.  As temperature increases, the lifetime of the state decreases and the line 

starts to broaden due to dephasing processes induced by thermally activated phonon modes 
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in the matrix.  When 0>T , Γ(T) is governed by excited state lifetime and phase relaxation 

time:53 

 Γ(T) = 
)(2

1

2 Tcτπ
 = 

cπ
1

⎥
⎦

⎤
⎢
⎣

⎡
+

)(
1

)(2
1

*
21 TT ττ

 (I.2) 

where τ2(T) is the dephasing time and τ2
*(T) is the phase relaxation (pure dephasing) time 

at  T K.  Quite frequently, the temperature dependence of τ1 is insignificant as compared to 

τ2
* and can be neglected.  The τ2

* is the time of the time-dependent part of the excited state 

wavefunction change from exp(iEext/ħ) to exp[i(Eext/ħ+δ)].  One should note that τ2
* 

approaches infinity if the molecule is imbedded in a crystal of 0 K. One the other hand if 

the glassy matrix temperature is above 3-4 K, τ2
* decreases dramatically and second term 

starts to dominate.53 

 Analogous to the vibronic states of molecules in gas phase, vibrational modes of 

solid lattices, phonons, also couple to electronic transition of guest molecules and that 

interaction is called electron-phonon coupling.  Fig. I.1 illustrates strong and weak cases of 

the electron-phonon coupling and their corresponding absorption spectra.  When the 

electron-phonon coupling is weak, the main feature of the absorption spectrum is the ZPL, 

along with a small phonon sideband (PSB).23  When the electron-phonon coupling is large, 

the PSB becomes significant compared to the ZPL.  The structure and width of PSB depend 

on local lattice dynamics at the impurity center, the electron-phonon coupling, and 

temperature.53  The relative strength of the ZPL and the PSB can be explained by the 

Franck-Condon principle.  In Fig. I.1a, the impurity molecule has a small change of 

geometry during the electronic excitation which can be approximated by a vertical 

transition, and the electron-phonon coupling is relatively small, leading to a weak PSB in 

the absorption spectrum.  On the other hand, for the case of strong electron-phonon 
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coupling (Fig.I.1b), the molecule goes through a large change of geometry during the 

electronic excitation and therefore a strong PSB appears in the spectrum.   

The spectral intensity of ZPL and PSB can be characterized by the Debye-Waller 

factor (DWF), α  (also known as FC factor):53 

 
PSBZPL

ZPL

II
I

+
=α  (I.3)  

where IZPL and IPSB are the integrated intensities of ZPL and the PSB, respectively.  In the 

harmonic oscillator model at 0~T  for N phonon modes, the DWF factor is given by:53 

 )exp( S−=α  (I.4) 

where S is the Huang-Rhys factor and can be described by:53 

 ( )∑ Δ==
i

i
ii q

M
TS 2

2
)0(

h

ω
 (I.5) 

In Eq. I.5, M and ωi are the reduced mass and frequency of the phonon mode i, respectively, 

and Δqi is the change of the equilibrium position corresponding to the lattice normal 

coordinate qi.  From Eq. I.5, we can see that 2)( iqS Δ∝ .  Thus, S can be used to 

characterize the strength of the electron-phonon coupling.  In general, the electron-phonon 

coupling is weak when S  < 1.  For S  > 1, the electron-phonon coupling is strong.53   

Both local lattice dynamics and the strength of the PSB are temperature-dependent, 

and so is the DWF.  The temperature dependent DWF is given by:53 

 ⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑

N

i
inST )12(exp)(α  (I.6) 

where thermal occupation number, [ ] 11)/exp( −−= kTn ii ωh , is the average number of 

phonons of mode i at temperature T.  α(T) reaches its maximum value at very low 

temperatures ( T  ≤ 10 K for most organic glasses). 
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Inhomogeneous Broadening 

 
Ideally, each dye molecule in a perfect crystal has the same immediate local 

environment and transition frequency; so that the homogeneous lineshape of the electronic 

transition can be described by a single ZPL (see Fig. 2a).  For example, such impurity lines 

are observed in Shpols’kii matrices, which are microcrystalline matrices of alkanes such as 

hexane, octane, and etc.  However, even very small differences in the local environment of 

the impurity may cause a large frequency shift in its absorption (see Fig. 2b).  This leads to 

the phenomenon of inhomogeneous broadening, where the homogeneous ZPLs are buried 

in the ensemble of transition frequencies of molecules.  

In general, inhomogeneous broadening is referred to the statistical distribution of 

the single site absorption spectra and can be characterized by an inhomogeneous 

distribution function (IDF), )(ωG , which is usually a Gaussian profile with a full width at 

half maximum of Γinh.53  Therefore, the absorption spectrum for the ensemble of the 

chromophores is the convolution of single site absorption spectra (including the ZPL and 

PSB) and the distribution function of these sites.  The Γinh is usually significantly larger 

than the homogeneous linewidth, Γ(0).  For example, for molecules in glasses or proteins 

matrices, the Γinh is around 100-400 cm-1 and Γ(0) is ∼0.0001 cm-1.  But, even for 

molecules in Shpol’skii systems, the Γinh is around 1-5 cm-1, which is still 3-4 orders 

greater than Γ(0). 

Several spectroscopic techniques of selective excitation at low temperature such as 

fluorescence line narrowing,22,23 spectral hole burning (SHB),1-18,22,53,54 and single molecule 

spectroscopy (SMS)24-41 have been developed to unearth ZPLs obscured by inhomogeneous 

broadening.  A common property of these techniques is that they are typically low 
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temperature techniques.  This is because, first, Γinh depends on temperature only very 

weakly for a given solid substance and second, according to Eqs. I.2 and the I.3. the lower 

the temperature is, the narrower the ZPL is and the higher the ZPL amplitude compared to 

PSB amplitude is.  Thus, low temperature maximizes these line-narrowing techniques’ 

resolution limit – the ratio of Γinh/Γ(T).   

 

Spectral Hole Burning 

 
If a molecule relaxes back to its original ground state after electronic excitation, 

then the transition frequency of this molecule remains the same.  Nevertheless, in certain 

substances, a small fraction of excited molecules may be subject to photochemical or 

nonphotochemical transformation and not return to the same ground state.  As a result, a 

spectral hole appears in the absorption spectrum and this process is called spectral hole 

burning (SHB).  A spectral hole can fill as soon as burning light stops – such holes are 

called transient; if holes can be observed (at least few seconds) after the burning light is 

turned off, they are called persistent spectral holes.  In photochemical hole burning (PHB), 

the hole formation occurs due to light-induced chemical reactions such as tautomerization, 

isomerization, or bond breaking.  In the case of nonphotochemical hole burning (NPHB), a 

fraction of excited molecules activate a rearrangement of solid matrix around them, leading 

to the change of transition frequencies and spectral holes.  A typical reason for the 

observation of a transient hole (a.k.a. population bottleneck hole) is possibility in some 

systems to pump impurity molecules into long-lived state (usually a triplet state), which 

does not absorb resonant light.  Transient hole burning is a useful tool in studies of 

complex photosystems,14 however it is out of scope for this dissertation. 
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To observe a spectral hole, four general conditions are necessary:  First, the 

absorption spectrum must be inhomogenously broadened.  Second, a light-induced 

frequency change mechanism must exist.  Third, a burning light source must have a 

narrower linewidth than inhomogeneous broadening.  Fourth, the hole filling processes 

must be slower than the hole burning processes.  The latter condition is one of the reasons 

why SHB is usually performed at liquid helium temperatures and hole burning is limited to 

temperatures, T < 130 K.22,53 

The energy landscape in low temperature amorphous system is usually very 

complicated.  The frequency change mechanism in persistent spectral hole burning (PSHB) 

is commonly explained with the help of two level systems (TLS) (see Fig. I.3a).  In the 

TLS model, hole burning occurs as the following.  Initially, the molecule is trapped in the 

left well of the ground state (g) of the TLS.  Then excitation with the burn frequency ωb 

brings a molecule to the electronically excited level (e) in the left well.  Next, the tunneling 

takes place in the excited state and finally, the molecule relaxes back to the right well and  

emits a photon of frequency ω2, which is different from ωb.  In amorphous matrices, there 

are two types of TLS – extrinsic, TLSext and intrinsic, TLSint.  The TLSint of the host matrix 

are intimately connected with excess free volume; TLSext are closely related to the impurity 

molecules and therefore associated with impurity and host molecules in the nearest 

neighborhood.  While TLSext are responsible for the frequency change in hole burning, 

TLSint determine the dynamic features of the zero phonon hole (ZPH) such as its width and 

dephasing properties. 

A hole burning spectrum can be obtained by subtracting the pre-burn spectrum from 

the post-burn spectrum.  The spectrum of hole burning usually consists of more spectral 
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features than the ZPH.  On the high-energy side of the ZPH, a phonon side band hole 

(PSBH) can be observed.  The amplitude of the PSBH is proportional to that of PSB in the 

single site absorption spectrum; however, it may be invisible due to its low amplitude in 

weakly electron-phonon coupled systems.  On the low-energy side of the ZPH, a pseudo-

PSBH can be observed frequently – this hole appears because some molecules absorb ωB 

through their phonons in the electronically excited state.  In addition to phononic excitation, 

vibronic excitation is also possible.  These vibronically excited molecules rapidly relax 

back to the zero vibrational level in their excited states.  After hole burning takes place, 

these sites lose absorption at frequency of νωω −= BA , where ν   is the vibrational 

frequency.  Consequently, a satellite hole appears at ωA along with the ZPH at ωB.   

Hole burning is a dynamic process; different burn fluences result in different 

spectral features.  At low intensities only the ZPH forms; at medium intensities both the 

ZPH and PSBH become observable.  At very high intensities, spectral features may merge 

and complicated energy landscape may introduce new hole burning channels, which can 

make initial spectrum quite unrecognizable.10   

Mechanism of NPHB.  In 1978, Hayes and Small proposed the first mechanism of 

NPHB based on a static distribution of extrinsic two-level systems (TLSext) to explain the 

frequency change in persistent nonphotochemical hole burning.54  A scheme of transitions 

of TLS coupled to the impurity molecule is shown in Fig. I.3a.  The superscripts g and e 

stand for the ground and excited states of the impurity.  After electronic excitation by laser 

frequency ωB, the originally trapped chromophore in the left well converts to the right well 

and remains there during relaxation.  In the late 1980s, results from optical dephasing 

studies showed that NPHB could not be fully explained by the static distribution model of 
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TLSext.55  They suggested that not only TLSext but TLSint plays an important part in NPHB.  

Later, Shu and Small proposed that NPHB is the result of a hierarchy of tunneling events 

triggered by optical excitation.55-56  First, the electronically excited molecule creates a wide 

perturbation in both the inner and outer shell of local spheres.  The perturbation then 

triggers a faster relaxation of the TLSint in the outer shell and terminates in the inner shell 

where the rate determining step involving the TLSext occurs. The second step results in 

diffusion of excess free volume from the outer shell to the inner shell of the impurity and 

this out-side-in process of the matrix rearrangement leads to change of absorption 

frequency and hole formation.  

The model of TLSext describes well the behaviors of NPHB at low burning fluences, 

however, it does not provide a good approximation to the hole burning process at higher 

fluences due to various saturation effects.10  In the theoretical model based on TLSext, hole 

growth slows down at medium fluences and finally stops; experimental observations are 

that ZPH and pseudo PSBH continue to grow indefinitely.10  In order to resolve this 

discrepancy, an additional second channel was introduced to the TLSext, which results in 

extrinsic multilevel systems (MLSext), and is shown in the Fig. I.3b.10  MLSext can be 

considered as additional parallel hole burning channels with different tunneling rates that 

are located on the same guest molecule.  At high burning intensities, some guest molecules 

are brought to the “trap states” of the MLSext (the right most well of Fig. I.3b) and become 

spectrally inaccessible by the laser frequency due to dramatic change of the transition 

energy.   

Applications of NPHB.  If the hole burning process was related only to impurity 

molecule, then one would not expect hole burning to reflect any property or information 
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regarding the change of the host matrix.  Instead, the mechanism of NPHB requires that 

large number of TLSint must participate in hole burning.  In other words, the impurity 

molecule and the host matrix become coupled in the process of NPHB, thus allowing 

NPHB to probe the local environment of the guest molecules.  On the other hand, spectral 

holes can be extremely narrow – up to 108 times narrower than inhomogeneous broadening.  

Consider that if some external field (e.g. electric or pressure) changes the chromophore 

resonance frequency, then the sharper the hole is, the smaller the change that can be 

detected.  Examples of typical NPHB applications include:  Measurement of ZPH widths, 

which allows determining excited state lifetimes, excitation energy transfer rates, and 

optical dephasing times.  Temperature dependence of ZPH widths reveals dephasing 

mechanism(s), which may include coupling with phonons, librons, TLSs and local modes.  

Hole shape and hole-growth kinetics provide electron-phonon coupling parameters, shed 

light on dephasing mechanism, and on structural heterogeneity.  Inhomogeneous 

broadening and site distribution function can be obtained by action spectra.  In Stark hole 

burning experiments, the phenomena of hole broadening and splitting can be used to 

measure the permanent dipole moment change, which is closely related to strongly couple 

molecules and their corresponding charge transfer character.  From high-pressure hole 

burning spectroscopy, the linear pressure-shift rates of ZPH can be found, and used to 

identify closely spaced excited states that cannot be easily resolved by other hole burning 

techniques.  
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Single Molecule Spectroscopy 

 
The optical detection and spectroscopy of a single molecule was first reported in the 

late 1980s.24  By using sensitive double-modulation techniques, single pentacene molecules 

in a p-terphenyl crystal were observed at liquid-helium temperature.24  Later, the same 

impurity-host system was used to obtain fluorescence excitation spectra of the single 

molecules.25  The greatly improved signal-to-noise ratio of the fluorescence signal opened 

gates for many experiments.39  For example, the lifetime-limited homogeneous linewidth of 

a single molecule has been measured down to a resolution of a few MHz.25,31  Spectral 

landscapes have also been observed by scanning the laser focal spot across the solid 

surface.28  The resulting three dimensional image offers spatial separation, spectral 

resolution and fluorescence intensity of individual peaks of single molecules.  Further, 

combining with confocal microscopy, single molecule experiments provide good signal-to-

noise ratio comparable to near-field optical scanning microscopy.33,34,59  The marriage of 

the two techniques made SMS a powerful tool in areas of applications and widely 

accessible to many research groups.39  For those more interested, several excellent reviews 

of SMS can be found in ref. 39-41 and 60.  

Requirements of SMS.  Two requirements are important to achieve SMS.  First, 

only one molecule should be in resonance in the probing volume of laser.  Second, the 

signal-to-noise ratio (SNR) should be as large as possible.31,40,41 

For room temperature experiments, one molecule in resonance can be guaranteed 

by using highly diluted solutions.  For a probing volume of 10 μm3, a solution in the 

concentration range of 10-10 M should be used in single molecule detection.40  On the other 

hand, more concentrated samples (4~5 orders higher) can be used in low temperature 
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experiments by tuning the laser frequency to the edge of inhomogeneous broadening of the 

absorption spectrum.40 

The SNR for single molecule detection by fluorescence excitation can be 

approximated by:31, 41 

 ( ) ττ
ν

τσφ
ντσφ

d0b
0F

0F /SNR
NPC

Ah
PD

AhPD
P

++

=  (I.7) 

where D (= ηQFpFfFl) describes the overall efficiency for the detection of emitted photons 

(where ηQ is the quantum efficiency of the photodetector, Fp is the fraction of the total 

emission solid angle collected by the objective, Ff is the fraction of emitted fluorescence 

which passes through the low-pass filter and Fl is the total transmission of the windows and 

collection optics along the way to the photodetector), φF is the fluorescence quantum yield, 

σ is the peak absorption cross-section, P0 is the laser power, τ is the integration time, A is 

the focal spot area, hν is the exciting photon energy, Cb is the background count rate, and 

Nd is the dark count rate.  The numerator is the peak detected fluorescence from one 

molecule in an interval of time τ, and the three terms in the denominator represent shot 

noise contributions from the emitted fluorescence, background, and dark signal, 

respectively.31,41  According to Eq. I.7, several important requirements need to be met in 

order to provide optimum SNR for SMS.  First, one should minimize the probe volume to 

suppress the background signal.  Additionally, several molecular properties are also 

important to SMS: the molecule should have a large peak absorption cross-section, high 

photostability, high fluorescence quantum yield, weak bottlenecks into triplet states, and 

the molecule should operate below the saturation of molecular absorption.31,41  
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Applications of SMS.  Several physical phenomena in low temperature have been 

observed for first time by SMS.  For example, light-induced spectral shifting and spectral 

diffusion of a single molecules due to conformational changes of the molecule’s 

nanoenvironment were reported.27  Studies of photon antibunching in single molecule 

systems revealed the changes in the triplet yield and triplet state lifetime of single 

molecules.61  In addition, vibrational modes of single molecules in crystals and polymers 

were also resolved by the emission spectra of single molecules.62,63  

Techniques of single molecule detection and spectroscopy have also been applied to 

biological systems, which are traditionally investigated by various modes of microscopy.  

For instance, precise measurement of molecular positions provide the rate of translational 

diffusion.64  Monitoring the emission from the enzyme’s fluorescent active site reveals the 

dynamics of enzymatic turnovers in real time.49  By combining  appropriate fluorophores 

and the Förster resonance energy transfer techniques, one can monitor real-time DNA 

cleavage, repair and hybridization by restriction enzymes.60,65,66   

Single molecule spectroscopy also provides insight to biophysical properties of 

photosynthesis.  Individual pigment-protein complexes of purple bacteria have been studied 

by single molecule spectroscopic techniques.67-70  The observation of energy localization in 

one band and energy delocalization over the other band of individual photosynthetic 

complexes of purple bacteria provides important information for exciton model and 

excitation energy calculation.69,70  For photosystem I of the cyanobacterium Synechococcus 

elongatus, fluorescence emission spectra of two antenna states of single complex show that 

they are different not only in the spectral location but also in their strength of electron-

phonon coupling.67,68 
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Red Antenna States of PSI of Cyanobacteria 

 
Photosynthesis, the most important process of storing solar energy on earth, is 

usually expressed by the deceptively simple chemical equation: 

 6 H2O + 6 CO2 → 6 O2 + C6H12O6 (I.8) 

In fact, the photosynthetic process is a sophisticated series of redox reactions driven 

by sunlight.71,72  Two coupled membrane protein complexes named photosystems I and II 

(PSI and PSII) in green plants, green algae, and cyanobacteria are responsible for the major 

reactions of photosynthesis.  The chemical reactions of PSI and PSII are interlinked by a 

chain of electron carriers.  The primary product of PSI is carbohydrates and the primary 

products of PSII are ATP and oxygen.71,72 

Much attention to PSI is stimulated by the 2.5Å resolution X-ray structure of PSI of 

cyanobacterium.71,72  The PSI of cyanobacterium exists as a trimer while it is a monomer 

for higher plants.  The major function of the PSI protein complex is to convert photons into 

chemical energy by transferring electrons from plastocyanin/cytochrome C6 on the luminal 

side to ferredoxin/flavodoxin at the stromal side of membrane.  Each monomer consists of 

12 protein subunits, a complicated network of chlorophyll a (Chl a) molecules, 22 

carotenoids, 3 [4Fe4S] clusters and 2 phylloquinones.71,72  Despite that the high resolution 

X-ray structure of PSI (from thecyanobacterium Synechococcus elongates) is available,71,72 

the connection between structure and spectrum remains undetermined.  The seemingly 

unorganized chl a network contains a strongly coupled special pair of reaction center (RC), 

P700, 4 Chls for electron transfer and ~90 antenna Chl a molecules.71,72  In addition to the 

major antenna states located at ~680 nm, there are antenna states that absorb at energies 

lower than P700*, the primary electron donor state of the RC.  According to the crystal 
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structure and spectroscopic data of PSI, dimers and trimers of chlorophylls are responsible 

for these red-absorbing antenna states.10,71,72  The major function of the red antenna states 

of PSI is well known: these red states can transfer energy upward to RC at physiological 

temperature and, further, they can also trap energy from higher antenna states as a role of 

photoprotector.73  Thus they are very important in the functioning of PSI.  For more details 

regarding the red states of PSI, ref. 9-11, 71, 72 are suggested. 

 

Research Objectives 

 
The red antenna states of PSI are known to originate from closely spaced Chls a 

that contain strong charge transfer character.  According to theoretical simulation57 and 

previous experimental results74 on photosynthetic complexes, hole splitting behavior 

should be observed by Stark HB experiments when chromophores possess strong charge 

transfer character.  Therefore, our goal was to apply high-resolution Stark HB techniques to 

study these chlorophyll molecular aggregates in the red antenna states of PSI.  On the other 

hand, previous NPHB results showed that more than one red antenna state or chl aggregate 

is responsible for the absorption spectrum of the red antenna band.9-11,74  Our second 

objective was to use NPHB and SMS to examine the energy transfer characters between 

high energy red antenna states and low energy ones and to determine the corresponding 

energy transfer rate of these states.  

 

 

 

 



www.manaraa.com

 16

Part II 

Introduction to Coherent Anti-Stokes Raman Spectroscopy  

 

Coherent anti-Stokes Raman scattering (CARS) is a nonlinear four wave mixing 

(FWM) process.  The interaction between matter and electric fields may be expressed as a 

power series in the applied electric field:  

 ......: )3()2()1( +++⋅= EEEEEEP
vvv

M
vvvv

χχχ  (II.1) 

where the vector P
v

is the macroscopic polarization vector, χ is the dielectric susceptibility, 

and the vector E
v

is the electric field.  Under low intensity of applied electric field, only the 

first order term is important.  This linear term describes linear optical effects like 

absorption, refraction, Rayleigh scattering, and normal Raman Scattering.  When the 

strength of the fields approaches high levels, nonlinear terms become important.  The first 

nonlinear term is responsible for frequency doubling (2ω1), sum frequency generation (ω1 

+ ω2) and difference frequency generation (ω1 − ω2) observed in crystals.  For liquids and 

gases this term is zero due to their isotropy.  The third term is always present in all 

materials and responsible for frequency combination of three waves, for example (3ω1), (ω1 

+ ω2 + ω3), (2ω1 + ω2), and (ω1 − ω2 + ω3).  The last one represents the CARS process (see 

Fig II.1). 

The advantages of CARS spectroscopy over spontaneous Raman spectroscopy are 

the high intensity emission and the separation from fluorescence signal.  Typically, CARS 

signal is many orders of magnitude stronger than conventional Raman scattering.  Second 

the CARS signals are coherent and therefore all the CARS signals can be collected.   
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Compared to an isotropic, incoherent scattering or emission process with ~1% 

collection efficiency, this coherency leads to a small solid angle of CARS emission and 

~100% collection efficiency of CARS radiation, which strongly reduces undesirable 

backgrounds such as fluorescence.  As a consequence, CARS provides a high signal-to-

interference ratio and is capable of probing molecules in high background environments 

over a broad range of experiment conditions. 

Magnitude and Phase-Matching Requirement of CARS.  The theory of CARS is 

well known and several excellent reviews give the theoretical background of CARS.75-84  

Here, we will only introduce important equations in the CARS theory.  

Assuming that the CARS process involves plane and monochromatic waves, the 

equation of electric field is represented as: 

 ∑
=

−++−=
4

1

* )exp()exp(),(
m

mmmmmm zkiiEzkitiEtzE vvvvvvv
ωω  (II.2) 

By using Maxwell’s equations and the constitutive relationship of polarization and electric 

field, one can derive the nonlinear wave equation of the propagation of light in a medium 

as:83,84 
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22
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where E
v

is the electric field of the light wave, n is the refractive index, c is the speed of 

light, and 4P
v

is the nonlinear polarization of the medium.  Eq. II.3 represents the interaction 

of incoming waves and the medium, which generates a new wave with polarization 4P
v

.  

Utilizing notations similar to Eq. II.2, the electric field and polarization can be written as 

.].)exp(),([
2
1

444 cctikzzEE +−= ωω  and .].)exp(),([
2
1

44
)3( cctikzzPP +−= ωω ; then by 
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substituting these notations into Eq. II.3 and assuming that the magnitude of the electric 

field changes slowly along the z direction, one can obtain the basic gain equation:78,83 

 dzzP
cn

izdE ),(2),( 4
)3(

4

4
4 ωωπω =  (II.4) 

Further, the intensity of the generated CARS signal along the z direction can be obtained 

by integrating Eq. II.4 over the range from z = 0 to z = l: 82 
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where I is the intensity of the incident beam, n is the refractive index, ε0 is the permittivity 

of free space, l is the length of interaction, χCARS is the third order nonlinear susceptibility 

of the medium, and Δk is the magnitude of the wave vector sum of the interacting beams 

(Δ k
v

 = 1k
v

 − 2k
v

 + 3k
v

 − CARSk
v

).  

As one can see in Eq. II.5, the CARS process exists only when incident laser beams 

are aligned and phased properly.  The maximum intensity of the CARS beam occurs when 

CARSk
v

 =  1k
v

 − 2k
v

 + 3k
v

 (i.e. Δ k
v

=0).  This relationship is generally known as the phase-

matching requirement of CARS (see Fig. II.2a).  There are several approaches for CARS 

phase matching, as several geometries of the three beams can satisfy phase-matching 

requirement.  They can be collinear CARS, BoxCARS, and folded BoxCARS.  Among 

these geometries, the folded BoxCARS is mostly chosen.  In this geometry, three incident 

beams come from three corners of an imaginary square.  After intersecting in the probed 

medium, three beams and the resultant CARS signal form another imaginary square on the 

reverse side of the medium (see Fig. II.2b).  As a consequence, the folded BoxCARS 

geometry provides the optimal spatial resolution and separation of the CARS signal beam.   
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Time-Resolved CARS.  By using ultrashort pulses of laser in CARS spectroscopy, 

important information, such as modes of vibrations, of atoms or molecules can be extracted  

from the response of the coherently excited systems.  In order to explain the relationship 

between the third-order non-linear polarization of the medium and the Raman-active 

vibrations, it is convenient to express the nonlinear part of Eq. II.1 as:81 

 3
*
21
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21
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⎞
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where N is the number density of molecules, M is the reduced mass of a molecule, D is a 

function of the frequency Ω of a Raman active vibration, frequencies of incident waves and 

a phenomenological damping constant, α is the linear electron polarizability, and Q(t) is the 

amplitude of the coherent Raman-active molecular vibration.  Evident from Eq. II.6, 

changing incident pulses properties, such as pulse duration and delay time between pump 

and probe pulses, will alter the result of CARS signal (which is proportional to square of 

)3(
nlP ) and therefore provide information of the vibrational modes of a molecule. 

The development of time resolved (tr)-CARS was stimulated by the advancement of 

high-power ultrafast lasers as picosecond pulses allowed instantaneous excitation of 

Raman-active vibrations and measurements of the decay kinetics of the coherent molecular 

vibrations.  Time-domain CARS technique has also been used to study various processes 

such as dephasing measurements of separate multipole moments of atoms, thereby 

revealing the nature of dephasing in atomic vapors and determining the relevant dephasing 

rate.81  Additionally, recent advancement of femtosecond lasers provides a broad spectral 

range to probe molecular vibrations simultaneously by detecting the beats of the CARS 

signal (see Fig. II.3) and therefore allowing one to measure the dynamics of wavepackets in 

both ground state and excited state molecules.81   
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Research Objective 

 
Conventional femtosecond tr-CARS utilizes three broadband laser pulses to prepare 

vibrational (or rotational) excited states of molecules by the first two pulses and probe the 

decay of the beats between vibrations (or rotations) by the third pulse (see Fig. II.3a).85-90  

The oscillations in the measured CARS signal can be later converted by Fourier transform 

into beat frequencies of the vibrational modes, ννν Δ=− 21 (see Fig. II.3b).  By changing 

the delay of laser pulses, the dynamics of vibrational energy transfer can be observed by 

monitoring these beats.  However, this technique can only provide indirect frequency 

information, Δν, and it is very challenging to find all the origins of the Δν values when 

several modes of vibration are present in the spectral range of 21 ωω −  (up to 
2

)1( −nn  beat 

frequencies can originate from n vibrational modes).  Further, if one wants to study 

dynamics of vibrations of excited state molecules by using conventional tr-CARS, it is very 

difficult since few molecules are fully characterized in terms of their vibrations in the 

electronic excited state. 

By changing the broadband probe beam (a femtosecond pulse) into a narrowband 

picosecond duration beam in the femtosecond tr-CARS technique, we were able to observe 

molecular vibrations directly without Fourier transform.  Our goal was to detect vibrations of 

excited state molecule by first pumping the molecules into their excited state and probing 

them by this fs/ps CARS technique. 
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Part III 

Single Enzyme Reactions in Biomimetic Containers−Liposomes  

 

Enzymatic Reactions of Single Molecules 

 
Reactivity of individual enzyme molecules was first reported in the mid 1990s.46  

Yeung and coworkers used the lactate hydrogenase (LDH-1) solution with very low 

concentration in a narrow capillary to ensure that only one molecule presents in every 

discrete zone of the capillary.  After individual LDH-1 molecules were reacted with 

nicotinamide adenine dinucleotide and lactate molecules, the products, NADH, were 

produced.  These fluorescent products were then separated from the enzyme molecules by 

electrophoresis and probed by laser-induced fluorescence.  The broad distribution of 

reactivity suggested that there are several conformers for this LDH-1 enzyme.  This 

technique was later used to study the activity of different single enzymes such as individual 

alkaline phosphatase molecules.48,91  However, capillary is not the perfect reactor for single 

enzyme reactions since proteins are known to exhibit strong adsorption to the wall of 

glass.92  To mimic the biochemical reactions in cellular environment, glass/capillary 

reactors may not be able to provide a suitable condition.  

 

Liposomes 

 
Liposomes, also known as artificial cells and artificial membranous lipid vesicles, 

are composed of phospholipid bilayer membranes which provide confined and isolated 

space for intracellular aqueous solutions (see Fig. III.1).  Therefore, the structure of 

liposomes highly resembles to the structure of living cell membranes, which are composed 
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of lipid bilayers and types of functional proteins.  Both natural (mixed) lipids and 

synthesized (pure) lipids can be used to prepare various functional liposomes of neutral, 

positive, and negative charges.  This unique property makes liposomes perfect model 

systems in many areas ranging from fundamental research of molecular biology to novel 

methods of drug delivery in the pharmaceutical industry.93  Nevertheless, there was one 

major disadvantage in liposome research and applications: time-consuming and labor-

intensive procedures of liposome synthesis.94  These tedious procedures usually took 

several hours to days, especially for preparation of giant liposomes (diameter greater than 

one micron).93,94  Fortunately, a rapid rotary evaporative method was invented and allows 

preparation of giant liposomes in just 2~3 minutes.93  This novel approach opens the way 

for many biomolecular applications, especially for highly labile and reactive species.  

Several chemical and biochemical reactions have been demonstrated by using the liposome 

reactors.  For instance, intercalation of dyes and DNAs,95 enzymatic reactions,92,96 and 

hydrogel formation of polymers and metal ions97 have been reported.  Three major micro-

manipulation techniques have also been developed to handle these ultrasmall vesicles in 

microscopic scale: electrofusion,95,98,99 electroinjection92,96,97 and light-induced fusion.100  

To study the kinetics of single protein reactions, electroinjection is probably not a good 

choice due to the strong adsorption interaction between proteins and the interior glass wall 

of pulled microneedles.  On the other hand, light-induced fusion requires two IR laser for 

optical trapping and one UV laser for liposome fusion.100  One major drawback of this 

technique is the UV laser can potentially damage the protein101,102 and therefore the activity 

of individual enzymes.   
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Research Objectives 

 
In order to eliminate any potential influences from surfaces, orientations and steric 

effects, the reaction of single alkaline phosphatase molecules is studied inside liposomes.  

The single enzymatic reaction inside liposomes is initiated by electrofusion which does not 

cause any damage or loss of proteins during the manipulation.  Besides, previous single 

molecule reactions in capillary are based only upon statistical analysis rather than direct 

observation of single molecules.  Our goal was to use fluorescent microscopy to study 

reactivity of individual proteins in liposome reactors with direct proof of single molecule 

image in vesicles. 
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Figure I.1.  Schematic presentation of potential energies and corresponding absorption 

spectra of the electronic transition from the ground state, S0, to the excited state, S1, of a 

guest molecule in a low temperature solid matrix.  g
iωh and e

iωh are the  corresponding 

vibrational energy quanta of local phonon mode i in a lattice normal coordinate qi. (a) and 

(b) represent the cases of weak and strong electron-phonon coupling, which correspond to  

small and large changes of equilibrium position Δqi, respectively.23 
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Figure I.2.  Line broadening of impurity molecules in (a) perfect lattices and (b) imperfect 

lattices.  (a) Homogeneous lines overlap in the absorption spectrum with a linewidth Γhom.  

(b) Each impurity molecule absorbs at a different frequency, which leads to an inhomogen-

eously broadened band with a width of Γinh. 
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Figure I.3. Extrinsic TLS model (a) and MLS model (b) for NPHB.  ωB is the burn frequency of 

the laser and k1, k2, and k3 are the tunneling rates.  I, II, and III denote chromophore-host 

configurations where I corresponds to the pre-burn configuration and II and III correspond to 

post-burn configurations.  W is the tunneling frequency, V is barrier height and Δ is the 

asymmetry of a TLS.10  Note that while TLS can be a good approximation for low fluence  hole 

burning, an MLS approximation becomes necessary at high fluences.10 
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Figure II.1. CARS energy scheme.  ω1, ω2, and ω3 are usually called ωpump, ωstokes (or 

ωdump), and ωprobe.  The energy difference between ω1 and ω2 corresponds to the energy 

to excite Raman-active vibrational and/or rotational modes of molecules.  The scheme 

shows energy conservation during the scattering process. 
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Figure II.2. Phase-matching of wave vectors in CARS.  (a) Three-dimensional vector 

diagram of the phase-matching condition necessary to obtain maximum conversion 

efficiency in the four-color technique.  (b) Spatial pattern of beams in folded BoxCARS 

geometry. 
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Figure II.3. (a) Broadband femtosecond laser pulses and (b) detected CARS signal (along 

with its Fourier-transformed frequency).  Only one beat frequency is shown in part (b) for 

clarity.  More than one beat frequency is possible. 
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Figure III.1. Schematic presentation of the lipid bilayer of a liposome.  Both intracellular 

and extracellular solutions are aqueous.  The hydrophilic “heads” and the hydrophobic 

“tails” are well aligned to minimize the potential energy.  Therefore, the lipid bilayer 

creates a boundary to encapsulate various particles and isolates them from the external 

surroundings. 
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CHAPTER 2. RED ANTENNA STATES OF PS I OF  

CYANOBACTERIA: STARK EFFECT AND  

INTERSTASTE ENERGY TRANSFER 

 

A paper published in Journal of Physical Chemistry* 

T.-M. Hsin, V. Zazubovich, J. M. Hayes, and G. J. Small 

 

Abstract 

 
Previously, Stark hole burning spectroscopy and effects of pressure at low 

temperature were used to determine the number of the red antenna states of the 

cyanobacteria Synechococcus elongatus and Synechocystis PCC6803 (Hayes, J. M.; 

Matsuzaki, S.; Rätsep, M., Small, G. J. J. Phys. Chem. B 2000 104, 5625. Zazubovich, 

V.; Matsuzaki, S.; Rätsep, M.; Hayes, J. M.; Small, G, J. Chem Phys. 2002, 275, 47).  

Distinct differences in linear pressure shift rates, the magnitude of the permanent dipole 

moment change, fΔμ, and electron-phonon coupling strength clearly show that in 

Synechococcus, there are three red states (C708, C715, and C719), while in 

Synechocystis, there are two red states (C708 and C714).  In the Stark hole burning 

spectra of the lowest states of these two systems, hole splitting was not observed, only 

____________________ 

* Reprint with permission from Journal of Physical Chemistry B 2004, 108(29), 10515-

10521. 

Copyright @ 2004 American Chemical Society 
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hole broadening, for excitation polarization both parallel and perpendicular to the Stark 

field direction.  The theories of Stark hole burning predict that splitting should occur for 

one of the polarizations, unless there is a large, random component to the induced dipole 

moment change, Δμind, which is not expected to be the case for pigment–protein 

complexes in which the orientations of pigments relative to the protein matrix are non-

random.  In this paper, Stark hole burning at higher resolution is used to re-investigate the 

absence of splitting.  Even at higher resolution, however, no splitting is detected.  This is 

explained by invoking large variations of the inherent dipole moment change Δμ0 of the 

dimer (the origin of the red state absorption), rather than of the induced dipole moment 

change.  These arise from a distribution of the relative orientations and separations 

between the components of the dimer.  This distribution also results in a random 

component of the polarizability change tensor, Δα.  The random components of Δμ0 and 

Δα not only obscure the Stark splitting, but also cause the large inhomogeneous 

broadening observed for these lowest energy red states.  Temperature dependent hole 

widths were also measured for C708 and C714 of Synechocystis.  For C714, a T1.3 

temperature dependence was observed, consistent with dephasing by the disordered 

protein matrix.  At 708 nm, however, much higher fluences were required to saturate the 

absorption of the blue edge of the C714 band, and then begin to burn C708.  The 

contribution of the C708 component to the broadening was weakly temperature 

dependent over the range measured, 2 to 14 K.  This contribution is due to energy transfer 

from C708 to C714, and the width measured corresponds to an energy transfer time of 6 

ps.  This observation provides further proof for the existence of two red antenna states, 

C708 and C714. 
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1. Introduction 

 
 Elimination of the effects of static inhomogeneous broadening by spectral hole 

burning at low temperatures1 has proven to be an invaluable technique for the study of 

complex molecular systems such as protein-pigment complexes.  When such complexes 

contain significant protein-pigment and/or pigment-pigment interactions, the power of the 

spectral hole burning technique can be further enhanced by including the effects of 

external fields on the hole spectra.  In particular, studies of photosynthetic pigment-

protein complexes where excitonic coupling of the chlorophyll pigments and strong 

electron-phonon (pigment-protein) coupling are important for electron transfer and 

energy transfer have benefited greatly from including the effects of pressure3-6 and 

electric fields (the Stark effect).3,4,7,8 

 For coupled pigments, the rate of linear pressure shifts to the red of spectral holes 

can be correlated with the coupling strength.  In the case of weak coupling, linear shift 

rates ≤ |0.15 cm-1 MPa-1| are typical.  (Shift rates of –0.05 to –0.15 cm-1 MPa-1 are typical 

for the ππ* transitions of isolated chromophores in polymers and glasses.9,10)  On the 

other hand for strongly coupled pigments, linear shift rates of ≥ |0.3 cm-1 MPa-1| are 

found.  Such large shift rates have been argued to indicate that electron-exchange 

contributes significantly to the coupling. 

 In the case of strongly coupled pigments, the electronic transition is often 

associated with a large change in the permanent dipole moment of the molecule, which 

can arise, for example, when the excited state possesses significant charge transfer 

character.  The magnitude of the change in dipole moment, Δμ, can be measured by Stark 

spectroscopy.  (Here and below, bold variables are vectors, regular variables are their 
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magnitudes.)  For example, the bacteriochlorophyll a special pair (P870) of Rhodobacter 

sphaeroides reaction center has fΔμ = 5.2 D,11 where f is the local field correction factor. 

(Although a value of f ≈ 1.5 is sometimes used, we prefer to report values as fΔμ since 

the dielectric constant of the protein medium is not known.)  The large value of fΔμ for 

P870 can be contrasted with the values typical of monomeric chlorophyll a (Chl a), 0.5-

0.6 D.3,8 

 The above points regarding pressure and Stark effects on hole spectra of Chl a in 

pigment-protein complexes are well illustrated in several papers on the red antenna states 

of PS I of cyanobacteria.3,4  These states, absorbing light at energies lower than that of the 

primary electron donor, P700, have attracted considerable interest and remain 

incompletely understood.12  Although these states can undergo upward energy transfer to 

P700 at physiological temperatures, it is not known if this is their primary function or if, 

e.g., photo-protection is more important.13 

 Interest in the red antenna states was further stimulated by the publication of the 

2.5-Å-resolution crystal structure of PS I from Synechococcus elongatus.14  In the 

structure, three dimers and a trimer of Chl a with Mg…Mg separations of ~8 Å were 

identified.  It was speculated that some of these might be the source of the red absorbing 

states and papers proposing possible assignments of particular multimers to individual 

red absorptions have appeared.15-17 

 Pressure and electric field effects on the hole spectra of both Synechococcus 

elongatus and Synechocystis PCC6803 were used by Small and co-workers to resolve the 

red state absorptions better.3,4  In Synechocystis, where the red absorption consists of a 

single broad band at 708 nm even at 4 K, zero-phonon holes (ZPH) burned to the red side 
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of the band show much stronger electron-phonon coupling than holes burned on the high 

energy side, suggesting that there are (at least) two states underlying the absorption.  This 

conclusion was reinforced by both Stark and pressure effects on the ZPHs, which had 

larger values of fΔμ (2.3 D at 714 nm) and of the linear pressure shifts (−0.45 cm-1 MPa-1 

at 713 nm) than on the blue side of the band (fΔμ = 1.0 D at 708 nm, pressure shift rate is 

−0.17 cm-1 MPa-1 at 706 nm).  From these results and from fitting the hole spectra as a 

function of the burn wavelength, λB, it was concluded that there are two red absorbing 

states at 714 nm (C714) and 708 nm (C708).  Although these states exhibit considerable 

spectral overlap, C714 was definitely associated with a strongly coupled Chl a dimer, 

possessing significant charge transfer character. 

 Similar analysis and results were also obtained for Synechococcus where there are 

two red absorption bands (C708 and C719) resolvable in the low temperature absorption 

spectrum.4,18  From the combination of hole burning with Stark fields and high pressure, 

an additional absorption or state (C715) was identified.4  The lowest state C719 has 

properties very similar to those of C714 of Synechocystis, while the other two states have 

smaller values for fΔμ and linear shift rate but still larger than typically measured for 

monomeric antenna Chl a. 

 A puzzling feature of the Stark hole spectra of the cyanobacteria is the absence of 

splitting of the ZPH burned into the lowest-energy (red) antenna band.3,4  In an electric 

field, the transition frequency of the molecule shifts as 

Δω = ħ-1(fΔμ⋅ES + ½f 
2ES⋅Δα⋅ES)    (1) 

where Δμ is the permanent dipole moment change between excited and ground electronic 

states, ES is the Stark field, Δα is the polarizability difference tensor, and f is the local 
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field correction factor, as mentioned above.  The first term in Eq. 1 describes the linear 

Stark effect while the second term is the quadratic Stark effect.  In what follows, only the 

linear term will be of interest (i.e., it is relevant for the field strengths ES used in the 

experiments).  The dipole moment difference, Δμ, can be described as a sum of the free 

molecule dipole moment difference, Δμ0, and the dipole moment difference induced by 

the protein lattice, Δμind.  According to refs 19-21, when Δμ0 is dominant over Δμind, a 

splitting of the ZPH should be observed for one of the two orthogonal polarizations of the 

exciting laser relative to the Stark field.  However, if Δμind is dominant, and has a large 

random component, such as in a polymer or glass matrix, only hole broadening will be 

observed independent of laser polarization.  It is in the view of this that the absence of the 

aforementioned splitting for the 714 nm and 719 nm states of Synechocystis and 

Synechococcus is surprising since the large fΔμ values of ~2.4 D are most reasonably 

attributed mainly to fΔμ0 (of the dimer), not fΔμind. 

 In this paper, the previous Stark results for PS I are reviewed and new non-

photochemical hole burning (NPHB) results obtained at higher resolution (50 MHz) are 

reported.  The intent of the higher resolution experiments is to determine if there is truly 

no ZPH splitting for the red-most antenna state of the cyanobacterial PS I or if the 

splitting was not observed due to limitations of the previous experiments.  These 

limitations are not only due to moderate (~0.5-1 cm-1) resolution per se.  (The resolution 

in ref. 3 and 4 was determined by the resolution of the Fourier transform spectrometer. 

The laser bandwidth was ~2 GHz.)  Note that the ZPH splitting can be observed when the 

polarized laser light creates anisotropy in the sample by burning only molecules (or 

states) with transition dipole moment approximately parallel to the laser light 
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polarization.  The latter condition was quite likely not satisfied in the experiments of 

Rätsep et al.3 and Zazubovich et al.,4 since the holes used for the Stark effect 

measurements were close to saturated and/or fluence-broadened (in order to see holes of 

reasonable fractional depth despite the low resolution), and, as a result, the polarization 

selection of the transition dipole moments of the burned states could be lost.  Since 

electron-phonon coupling for the C714 state is strong (Huang-Rhys factor S ≈ 2 due to 18 

and 70 cm-1 phonons), the maximal fractional ZPH depth, which can be achieved for this 

state is 0.13 (exp(-S)).  Thus, 10%-deep holes may be already saturated enough to 

prevent observation of the splitting.  In the experiments by Rätsep at al.3 and Zazubovich 

et al.4 the noise level was ~1 % of the signal, which resulted in hole depth-to-noise ratio 

of not more than 10 for 10 % deep (and probably saturated) holes at zero applied field.  

Broadening of the hole in the electric field resulted in further reduction of hole to noise 

ratio, making those holes barely detectable. 

A second objective of this work is to find out if excitation energy transfer occurs 

from higher-energy red states to lower-energy ones and to determine the rate of such a 

transfer.  Formation of a lower-energy (714 nm) satellite hole upon higher-energy (706 

nm) excitation was observed for Synechocystis.3  However, it was not clarified if this 

effect is due to energy transfer or due to structural changes, which accompany non-

photochemical hole burning of the states directly excited.  The shape of the non-line-

narrowed emission spectrum (peaked at 722 nm) suggests that the C708 state does not 

fluoresce.  Thus, experimental observations indicate that C708-C714 energy transfer most 

likely does occur.  The issue will be clarified by precise determination of the 
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homogeneous widths of the ZPH burned into the C708 state; these widths are inversely 

proportional to the energy transfer time.   

 

2. Experimental Section 
 

The research was focused mainly on Photosystem I of Synechocystis.  Since it has 

only two red antenna states, the results can be interpreted more easily.  As we will see, 

the results for Synechococcus (less detailed studies performed) were similar.  

Synechocystis and Synechococcus wild type trimer PS I samples were prepared as 

described in refs 3 and 4 respectively.  To improve the resolution, holes were probed in 

the fluorescence excitation mode as opposed to the absorption detection used in refs 3 

and 4.  Hole burning was carried out and the spectra were scanned using the Coherent 

699-29 (Autoscan) laser at 50-MHz resolution.  Laser intensity was stabilized with a CRI 

power stabilizer and attenuated with neutral density filters.  The intensity when scanning 

was of the order of 2 μW cm-2, the intensities used for burning were about 100 times 

higher.  The total burning doses were in the range 0.001 to 0.27 J cm-2, depending on the 

burn wavelength (i.e. at least 100 times smaller than those used in refs 3 and 4).  Hole 

spectra were scanned within a 50-GHz window precisely centered at the burn 

wavelength.  Fluorescence was detected at a 90o angle (in relation to excitation) by a 

cooled photomultiplier (Hamamatsu) through an AELP730 interference filter (Omega 

optical).  The Stark hole burning apparatus is described elsewhere.8  Briefly, the sample 

in a gelatin capsule (Torpak) was squeezed between the electrodes of the Stark cell 

(distance between electrodes 4 mm).  Voltages of up to 3.5 kV were obtained from a Trek 

model 610C high voltage power supply, which resulted in electric field strengths of up to 
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8750 V cm-1.  Experiments were performed for laser polarization both parallel and 

perpendicular to the Stark field.  A polarization plane rotator (Thorlabs) was used to 

rotate the laser polarization by 90o.  The Stark cell was immersed into liquid helium in a 

Janis 8 DT cryostat with temperature controlled and stabilized at 2 K by a Lakeshore 

Cryotronic model 330 temperature controller.  

To burn deep holes into the C708 band, it was necessary to use higher fluences.  

These holes were measured with a resolution of 6 GHz using no etalons in the burn laser 

(laser bandwidth 2 GHz).  Holes were burned for several fluences (up to 100 J cm-2) and 

holewidths extrapolated to zero fluence. 

Some spectra exhibited a sinusoidal modulation.  In order to account for that, the 

pre-burn spectrum was fitted to a sinusoid and that sinusoid was subtracted from the hole 

spectra before fitting to a Lorentzian shape.  Alternatively, if the signal-to-noise ratio 

allowed, pre-burn spectra were subtracted from post-burn spectra before fitting. 

 

3. Results 

 
 Figure 1 shows an example of a 6 % deep hole at 716 nm in PS I of Synechocystis 

in zero-field and the same hole in an applied field of 5.0 kV cm-1 with ES || Elaser.  No 

splitting was observed in either polarization even for very shallow holes (3 % deep) 

which were used to insure that any splitting was not obscured by saturation of the hole.  

To determine fΔμ, ~6 % deep holes were used, as a more reliable value could be obtained 

because of the higher signal-to-noise ratio of the deeper holes.  Values for fΔμ were 

determined for several wavelengths in both parallel and perpendicular polarizations 
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(relative to the Stark field direction) using the theory of Kador et al.22  The results are 

given in Table 1, and a representative plot of the hole width, Γhole, versus applied field is 

shown in Figure 2.  For Synechococcus, measurements were made at 710 and 723 nm 

using parallel polarizations only.  Values of fΔμ were similar to those for Synechocystis 

(i.e., 2.6 D and 1.6 D at 723 nm and 710 nm, respectively). 

 Table 1 also includes the values of fΔμ reported in ref 3.  In that work, it was 

reported that within experimental error, there was no difference in the values measured 

for the two orthogonal polarizations.  Although this might be true for λB = 707.5 nm in 

the present work, at longer wavelengths the effect for parallel polarization is significantly 

larger than for perpendicular.  Also, note that in the earlier work, the dipole moment 

change clearly decreased below 708 nm (to ≤ 1 D), while in the present work, the values 

are nearly constant over the range of the experiment.   

Turning to the hole widths, there is a weak wavelength dependence and a fluence 

dependence over the range from 716 nm to 707.5 nm.  For example, at 716 nm the width 

was 2-3 GHz for a 3 % deep hole, increasing to 6-7 GHz for a 10 % deep hole.  At 709 

nm, on the other hand, the width was 4-5 GHz at the lowest fluence used, with a depth of 

3 %.  Increasing the fluence to that used to burn the 10 % deep hole at 716 nm caused a 

slight increase in depth to 4 % while increasing the width to 8-9 GHz.  Further increases 

in fluence did not increase the hole depth but rather caused broadening.  Our inability to 

burn deep narrow holes at ~708 nm, as well as the results of Stark experiments (see 

above), indicate consistently that shallow holes burned in this wavelength range belong to 

the higher-energy side of the broad C714 band.  This is the reason that the fΔμ values 

obtained at ~708 nm differ from those reported in ref 3.  Because of the much higher burn 
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fluence used in ref 3, the C708 state was preferentially probed in that work for burn 

wavelength around 708 nm.  A small contribution from the C714 state to spectral hole 

burned in that region was not resolved in ref 3.  In the present work, the slight decrease in 

fΔμ values with the decrease of the burn wavelength may be explained by the C708 state 

just starting to contribute to the spectral holes for the burn fluences used.  The significant 

(at least an order of magnitude) difference in hole burning efficiencies for the C714 and 

C708 states is most easily explainable assuming different excited state lifetimes.  That the 

fΔμ value for 15-GHz (in zero-field) 4%-deep ZPH was still close to 2 D, indicates that 

the lifetime of the C708 state is shorter than 20 ps.  Because a reliable determination of 

the ZPH widths larger than 15 GHz in high-resolution mode is somewhat problematic, we 

switched to lower-resolution (6 GHz) mode to determine the lifetime of the C708 state 

precisely.  Using a broader burn laser (2 GHz), and fluences such as used in refs 3 and 4 

(up to 100 J cm-2), a 10%-deep hole with a width of 1.7 cm-1 was obtained at 707 nm.  

(The widths given so far were all obtained at 2 K.)  The broad holes burned in the C708 

band exhibited a slow increase of the homogeneous ZPH width with temperature.  This 

indicates that the ZPH width is, in case of the C708 band, determined mainly by a 

temperature-independent process (most likely energy transfer, see Discussion), with some 

contribution from dephasing.  An example of a 2.0 cm-1 wide hole burned at 708.4 nm at 

10 K is shown in Figure 3.  For the C714 band (λB = 715-716 nm), the ZPHs broadened 

according to a T1.3 power law over the range from 2 to 14 K (results not shown).  Thus, 

the width of the ZPHs burned into C714 band is determined by TLS-assisted dephasing 

only. 
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4. Discussion 

 
A: Stark Hole Burning Results.  Under high resolution and optimum conditions 

Stark splitting of the ZPH burned into the red-most C714 and C719 absorption bands of 

Synechocystis and Synechococcus was not observed.  The only photosynthetic pigment-

protein complex in which a splitting has been observed in the Stark hole burning 

spectrum is the Fenna-Matthews-Olsen (FMO) protein.8  FMO is a trimeric antenna 

complex from green sulfur bacteria.  Each of the three proteins, which make up the intact 

complex contain seven bacteriochlorophyll a molecules.  Coupling between BChl a 

belonging to different proteins is weak and the lowest energy absorption band (825 nm) 

of the complex is due to a single BChl a in each protein.  Because coupling between these 

three BChl a is weak, the 825 nm band is the sum of three transitions which would be 

degenerate except for structural disorder.  The properties of this state are nearly ideal for 

the observation of splitting in the Stark hole spectra from the viewpoint of the relevant 

theories,19-21 according to which hole splitting is best resolved when the angle, γ, between 

the transition dipole moment, D, and Δμ is ~ 0° and the laser polarization, EL, is parallel 

to ES, the Stark field.  Such was the case for the FMO complex.  In ref 8, it was estimated 

that γ < 15°.  Furthermore, the Stark broadening which occurs along with splitting was 

small, so that the splitting was more easily resolved.  Also, as is often the case when 

excitonic coupling is weak, the electron-phonon coupling is also weak for the FMO 

system, so that a ZPH could be burned with high signal-to-noise ratio.  Finally, 

inhomogeneous broadening is relatively small in FMO (~70 cm-1), which correlates with 

smaller contributions from the random components of Δμ, (vide infra). 



www.manaraa.com

 50

Turning to the lack of ZPH splitting in this work for the red-most antenna states 

of Synechocystis and Synechococcus, let us consider first the source of the hole 

broadening induced by the Stark field.  The only broadening mechanism included in the 

theories in their simplest form (see Fig 6 by Kohler et al. or Fig 2 by Schatz and Meier) is 

broadening due to cos2υ (where υ is the angle between the transition dipole D and the 

laser polarization EL) i.e. the spatial distribution of the transition dipoles of the burned 

molecules.  This broadening is always present, even if ∆μind = 0.  According to this 

simplified theory, splitting should be observed for one laser polarization or the other, 

although it should be less resolvable for γ ≈ 90o than for γ ≈ 0o.  Following Schätz and 

Maier20 (a less detailed discussion, without the calculation of sample hole spectra, is 

given also in refs 19 and 21), we write the matrix-induced term as 

∆μind = ∆α⋅Eint     (2)  

where Eint is the field induced at the position of the chromophore by the surrounding 

lattice.  ∆μind can be represented as a sum of fixed (in the frame of chromophore 

molecule) and random contributions: 

   ∆μind = ∆μind,fixed + ∆μind,random    (3) 

The angle for γ between D and ∆μ0 is considered well defined.  It is obvious from Eqs. 1-

3 that if ∆μind,random is dominant over ∆μfixed = ∆μind,fixed + ∆μ0 then no hole splitting is 

expected for any polarization, only broadening.  (This is the case treated by Kador et al. 

22, for small variance in the magnitude of the randomly oriented dipole moment change.)  

A less obvious result follows from the detailed simulations by Schätz and Maier:20 lack of 

splitting can also occur even if ∆μind,random is not dominant.  For example, for D and 

∆μfixed approximately perpendicular, splitting is not observable already for ⏐∆μfixed⏐ 
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/⏐∆μind,random⏐= 2 (see fig. 8C in ref 20).  As was mentioned above, in photosynthetic 

complexes the orientation of chlorophylls in relation to the protein is approximately fixed 

and ∆μind,random is not expected to be large.  However, because of structural disorder, it is 

not expected to be zero either.  (The rough analysis given below indicates that random 

and fixed contributions may be of comparable magnitude for C714 of Synechocystis, 

even if the results are interpreted so as to maximize ∆μfixed.)  Significant static 

inhomogeneous broadening (~50-200 cm-1) of Chl S1(Qy)←S0 absorption bands is 

generally observed in photosynthetic complexes.  This broadening may be treated in 

terms of the solvent shift and expressed through the same variables as used above:19 

 ∆ωsolvent shift = -ħ-1(∆μ0Eint +1/2 Eint⋅∆α⋅Eint)   (4) 

The solvent shift depends only on the parameters of the chromophore (∆μ0 and ∆α) and 

the “pocket field” Eint.  It is not dependent on the external field.  Based on Eq. 4, the 

inhomogeneous broadening is positively correlated with the degree of orientational and 

translational disorder and with the magnitude of the random contribution to Eint, resulting 

in a large ∆μind,random value.  We emphasize that the inhomogeneous broadening for the 

C714 state of PS I of Synechococcus is unusually large ~300 cm-1,23 while the lowest 

energy band of the FMO complex consists of three quasi-degenerate bands each with a 

width of only ~70 cm-1. 

 Next, taking into account that C714 is the lowest exciton component of a dimer, 

the frequency of the electronic transition for the C714 state is determined not only by 

diagonal disorder (described in the previous paragraph as differences in solvent shifts) 

but also off-diagonal disorder, which is due to differences in the inter-pigment couplings 

from complex to complex.  These differences result from the variations in distance and 
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mutual orientation of the chlorophylls of the dimer.  The distribution of orientations of 

the pigments in relation to each other results in the distribution of the angle γ between D 

and ∆μ0 as well as distributions of the magnitudes of both vectors.  (Here D and ∆μ0 are 

redefined as the transition dipole moment of the lowest state and permanent dipole 

moment change, respectively, for a “free” dimer.)  In other words, in the case of a dimer 

in a glass-like protein both ∆μ0 and ∆μind have a random component.   

∆μ0 = ∆μ0,fixed + ∆μ0,random     (5) 

It is quite likely that the components of the polarizability difference tensor ∆α  for the 

lowest state of the dimer are also subject to a distribution, for the same reasons that there 

is a distribution of ∆μ0.  We stress that whereas for a monomeric chromophore the origin 

for a distribution of ∆μind is a distribution of Eint only, for the dimer there are distributions 

of both Eint and ∆α. 

The quantity observable in Stark hole burning experiments is the magnitude of  

  ∆μ0 =∆μ0,fixed + ∆μ0,random + ∆μinduced,fixed + ∆μinduced,random  (6) 

The right side of Eq. 6 is a vector sum, so fixed and random contributions can be 

grouped together.  If the fixed components fully cancelled each other, splitting would be 

unobservable for any angle γ and the values of fΔμ would be equal for both polarizations.  

Although hole splitting is not resolved in our experiments, the observations indirectly 

suggest that splitting may be present, but hidden by the broadening.  First, the difference 

in fΔμ values for different polarizations observed here, but not in ref 3 or 4, may be due 

to splitting for parallel polarization.  It has also been observed that the fΔμ values 

obtained from the shallowest holes (less reliable) are systematically larger than those 

obtained from more saturated holes.  For example, values of 2.9 and 2.2 D were obtained 
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for parallel and perpendicular polarizations, respectively, for a 3 % deep hole burned at 

716 nm.  If these values are correct, they may indicate the presence of a fixed 

contribution to fΔμ that gradually becomes unobservable with the loss of the ensemble 

anisotropy by hole saturation.  In order to be more specific, we present an alternative 

analysis of the hole spectra from Figure 1.  The bottom of the 5 kV cm-1 hole shown is 

slightly flattened, which may indicate the onset of hole splitting.  Although a good fit is 

obtained by fitting this hole to a single Lorentzian, a similarly good fit can also be 

obtained by using two 10-GHZ-wide Lorentzians, separated by 6 GHz.  From such a 

shape, a rough estimate of fΔμfixed is 1.2 D for zero angle between fΔμfixed and D, based 

on ∆ωsplit = fΔμES cosϕ, with ϕ  being the angle between Δμ and ES.  If ES || Elaser || D, 

then cosϕ ≈ 1, and an estimate for f∆μrandom is ~1.8 D, according to the theory of Kador et 

al.22  This value agrees well with those measured for the perpendicular polarizations.  

Note, however, that because ∆μrandom = ∆μ0,random + ∆μinduced,random the condition of small 

variance in the magnitude of ∆μrandom may not be satisfied.  There is also no reason to 

believe that the angle between ∆μfixed and the transition dipole moment D is indeed zero.  

A ~25o angle was initially estimated by Lockhart and Boxer using Stark modulation 

spectroscopy for the lowest state of the special pair of the bacterial RC.24  This angle 

increased to ~38o  and to ~45o with subsequent refinements of the analysis.11,25 

To explain the “real” lack of splitting, one may assume, in addition to large 

fluctuations in ∆μ0, ∆α and Eint , that the angle γ’ (between D and ∆μfixed) is closer to 900 

than to 0o.  As mentioned above, in the latter case splitting is less pronounced even for 

∆μrandom = 0.  However, γ’ ≈ 90o would be in contradiction with broadening of the hole 

being faster for parallel laser polarization and external field direction.   
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Some discussion on recent Stark modulation spectroscopy results by Frese et al.26 

is also in order.  Frese et al. performed their experiments at 77 K in magic angle con-

figuration, which eliminates any dependence on γ and on the precise shape of ∆α.  They 

observed that Tr(∆α) = 600 Å3f -2 for C719 of Synechococcus and Tr(∆α) = 275 Å3f -2 for 

the red antenna band of Synechocystis (the two different states were not resolved).  First, 

since Frese et al. did not resolve the C708 and C714 bands of Synechocystis, the value of 

275 Å3f -2 is most likely an average value for the two states and the value for C714 alone 

should be closer to 600 Å3f –2 as measured for Synechococcus.  Previous hole burning 

spectroscopy results have shown that properties of C714 of Synechocystis and C719 of 

Synechococcus are very similar.3,4  The inability to resolve the C708 and C714 band is 

probably why a very small (compared to that of C719) dipole moment change (f∆μ = 0.4 

D) was observed for the red band of Synechocystis.  We assume that the “correct” value 

for f∆μ for C714 obtained by modulation Stark spectroscopy would be close to that for 

C719 of Synechococcus (i.e. 3.6 D ± 15 %).  Random components were not considered in 

ref 11 and 26.  Note that for f∆μfixed = 3.6 D the hole splitting would be observed much 

better than it really is.  Thus, it is another example of the f∆μ values obtained by 

modulation spectroscopy exceeding those obtained with hole burning.  For a pocket field 

of the order of 106 V/cm the polarizability difference values reported by Frese et al. 

would yield ~2 D for f∆μind.   

A meaningful independent estimation of different components of ∆μ requires 

detailed knowledge about the nature of the charge-transfer state, as well as about the 

structure of the protein pocket.  This, in turn, requires assigning of C714 state to some 

chlorophyll aggregate known from structure data.  Such data is not available for 
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Synechocystis.  On the other hand, recent observations that the structure of plant PS I27 is 

very similar to that of Synechococcus suggests that the latter structure could be used for 

Synechocystis without producing significant errors.  One can argue that the dimer with 

the smallest Mg…Mg distance of 7.6 A (B37-B38)14 is the most likely candidate for the 

origin of the charge transfer state.  This dimer is the one for which high interpigment 

couplings were obtained in various approximations.15,16  Site energies of individual 

chlorophylls, as estimated in ref 16, are also reasonably low.  Although this dimer was 

rejected15,16 as being a red state based on its lower excitonic state being less intense than 

the higher state, we believe it is not necessarily a problem.  Quite the opposite, it is in 

agreement with the total absorption strength of the red antenna states of Synechocystis 

being approximately equal to that of ~3 Chl a molecules and with the relative weakness 

of the C719 band in Synechococcus when the presence of the C715 state is taken into 

account.  Recently, Gobets et al.28 proposed that the C719 state of Synechococcus 

originates from the B31/32/33 trimer.  However, such an interpretation ignores the fact 

that several properties of C719 of Synechococcus are essentially identical to those of the 

C714 of Synechocystis,3,4 which does not contain a trimer.  These properties are f∆μ, the 

linear pressure shift rate, the electron-phonon coupling and static inhomogeneous 

broadening.  Although agreement in assigning the red-most state to a particular dimer has 

definitely not been reached, it is widely accepted that the red antenna states are the lowest 

exciton states of strongly coupled chlorophylls.   

 B: Energy transfer between the red antenna states.  Next, we consider the hole 

widths.  The T1.3 dependence of the ZPH width ΓZPH is commonly seen for the dephasing 

of chromophores in disordered solvents.29,30 
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ΓZPH(T) = ΓZPH(T=0)+ a T 1.3    (7) 

It is not surprising to see this dependence for the C714 state, as the holes are 

burned by a non-photochemical mechanism, which also depends upon the protein matrix 

being disordered.  Similar behavior was observed for the lowest-energy states of several 

photosynthetic complexes.  The values of the pre-factor a were 0.2 GHz/K1.3 for FMO,31 

0.2 GHz/K1.3 for CP-437, 0.35 GHz/K1.3 for PS-II-RC32,33, as well as ~3 GHz/K1.3 for 

B870 band of LH-234 and ~1 GHz/K1.3 for LHC-II.35  (The latter two values were, 

however, obtained with low spectral resolution.)  a = 0.9 GHz/K1.3 observed for the C714 

band of the Synechocystis PS I lies within the same range. 

Of more interest is the behavior of the holes near 708 nm.  First, there are two 

possible explanations of why burning deep (ZPHs with the fractional depth of ~15 % and 

the width of ~2 cm-1 were burned at 706-708 nm by Rätsep et al.3) narrow holes at ~708 

nm is impossible in fluorescence excitation mode.  According to the first scenario, the 

C708 state does not transfer energy to C714 state.  In this case, the C708 state must 

contribute much less to the fluorescence excitation spectrum than to the absorption 

spectrum.  (Note that the electron-phonon coupling is smaller for C708 than for C714 

state.  In the absence of energy transfer, the emission from the C708 state would be 

peaked at ~710 nm and detected much less efficiently than that from the C714 state with 

our experimental setup including >730 nm cut-off filter.)  Figure 4 represents the broad-

range fluorescence excitation spectrum of Synechocystis PS I.  It is obvious from Figure 4 

that at wavelengths longer than ~695 nm the fluorescence excitation spectrum (dashed 

line) is a perfect match for the absorption spectrum (solid line).  Thus, the C708 does 

contribute to the fluorescence excitation spectrum.  (The discrepancies at shorter 
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wavelengths may be real and reflect the fact that part of the energy harvested by antenna 

pigments is not transferred to the C714 state.  Alternatively, these discrepancies may be 

an experimental artifact due to too high optical density of the sample at these 

wavelengths causing reabsorption effects.)  Note also, that the nonline-narrowed emission 

spectrum of PS I of Synechocystis is peaked at ~722 nm3 and does not contain any 

noticeable shoulder at ~710 nm, where the emission from the C708 state would be 

expected.  Finally, the observation that it is possible to burn ~10%-deep ZPHs, though 

broad, at 708 nm in fluorescence excitation mode also argues against the C708 state not 

contributing to the fluorescence excitation spectrum.  

Consequently, we reject the above scenario and conclude that the C708 → C714 

energy transfer does occur and that it is fast, which results in hole burning efficiency for 

the C708 state being orders of magnitude lower than for the C714 state.  Thus the failure 

to burn deep holes at ~708 nm at low fluence is explained attributing the observed 

shallow narrow holes to the blue edge of the C714 band, rather than to the C708 band.  

According to ref 23, about 20 % of the absorption at 708 nm is due to C714, which is 

consistent with being able to burn only ~4 % ZPH, given the Huang-Rhys factor for the 

C714 state.  For higher fluence and a 2-GHz laser bandwidth, the observed ~10 % holes, 

with widths of ~1.7 cm-1 at 2 K, are no doubt due to burning into the C708 band, 

followed by energy transfer to the C714 state.  The hole width is determined by energy 

transfer time, ~6 ps.  The presence of such an energy transfer is an additional proof of 

existence of two distinct red antenna states in Synechocystis PS I. 
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Table 1.  Changes in permanent dipole moment for the red antenna states. 

 fΔμ (D) 
 

λ 
(nm) ⊥ and ||a ||b ⊥b 

690 0.5   
692 0.6   
695 0.5   

698.5 0.7   
702 0.6   

707.5 0.8 1.9 1.7 
708 1.0 2.5  
709  2.4 1.9 
710 2.0   
712 1.8 2.5 1.8 
714 2.3   

Synechocystis 

716 2.4 2.6 2.0 
692 0.5   
694 0.7   
696 0.8   
698 0.5   
701 0.6   
704 0.8   
706 0.6   
708 0.7   
710 1.0 1.6  
712 1.0   
714 1.3   
716 2.2   
718 2.2   
720 2.3   

Synechococcus 

723  2.6  
 

a Synechocystis values are from ref 3;  Synechococcus values are from ref 4. 
b All values from this work. Error is ± 0.2 D 
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Figure Captions 

 

Figure 1: Experimental hole spectra (solid lines) and Lorentzian fits (dashed lines) for 

λB=716 nm, laser polarization parallel to the direction of the Stark field and the field 

strengths of 0 and 5 kV cm-1.  Burn fluence was ~0.01 J cm-2.  For ZPH widths for 

intermediate field strengths see Figure 2.  T=2K. 

 

Figure 2: The dependence of the ZPH width on the external electric field for the ~6%-

deep hole (see Figure 1) burned at 716 nm (♦) and the best fit based on the model 22 (solid 

line).  Laser polarization was parallel to the direction of the Stark field and the burn 

fluence was ~0.01 J cm-2.  fΔμ = 2.7 D. 

 

Figure 3: Experimental hole spectrum (—) and Lorentzian fit (---) for λB=708.4 nm.  

Burn fluence was ~100 J cm-2; fractional ZPH depth is 7-8 %; T = 10K. 

 

Figure 4: Absorption (—, from Ref 3) and fluorescence excitation (---, this work) spectra 

of the PS I from Synechocystis.  T = 5K. 
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CHAPTER 3. EMISSION SPECTRA OF SINGLE  

MOLECULE PHOTOSYSTEM I COMPLEXES FROM  

CYANOBACTERIUM SYNECHOCYSTIS PCC 6803 

 

A paper submitted to Photosynthetic Research* with coauthors: 

Tse-Ming Hsin, Tõnu Reinot, Kerry Riley, and Valter Zazubovich 

 

Abstract 

 
Emission spectra of individual trimeric photosystem I complexes from 

cyanobacterium Synechocystis PCC 6803 were measured.  Broad structureless bands are 

peaked at approximately 720 nm, indicating strong electron-phonon coupling for the 

lowest-energy red antenna state (C714), in agreement with spectral hole burning results.  

No sharp lines belonging to the higher-energy (C708) state were observed in emission 

spectra, which suggest that the two red antenna states (C708 and C714) are connected by 

relatively fast and effective energy transfer.  The results are compared with those 

obtained for photosystem I from Synechococcus elongatus (Jelezko et al. 2000); possible 

origins of narrow zero-phonon lines (ZPL) observed by Jelezko et al. in emission spectra 

of PSI from Synechococcus near 711-712 nm are discussed. 

 

 

____________________ 

* After extensive modifications and after additional data were obtained, the work was 

published in Journal of Physical Chemistry B 2007, 111(1), 286-292. 
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Introduction 

 
Photosystem I (PSI) is one of the two major photosystems involved in oxygenic 

photosynthesis and the largest and most complex membrane protein for which detailed 

structural and functional information is now available.1,2  It converts light energy into 

chemical energy by transferring electrons through the thylakoid membrane from 

lastocyanine or cytochrome c6 to NADP+. Structures of PSI from the cyanobacterium 

Synechococcus elongatus2 and higher plant (Pisum sativum)3 were recently determined 

with high resolution by means of X-ray diffraction.  Similarity of the core structures 

indicates that only minor variations in the core organization and function occurred in the 

way of evolution and provides a legitimate reason to believe that PSI cores from other 

organisms are also similar. (PSI of higher plants, deep-water strains of Prochlorococcus 

marinus,4 as well as some other cyanobacteria grown under iron5,6 additionally contains 

peripheral light-harvesting complexes.)  Therefore, cyanobacterial PSI can serve as a 

good model for the PSI core of higher plants.  Cyanobacterial PSI has a trimeric 

structure,2 with each monomer being a complex network of chlorophyll a (Chl a) 

molecules embedded into protein where ~90 antenna Chls surround the “reaction center” 

(containing primary electron donor P700 and accessory Chls) and funnel the sunlight 

energy into it.  While the majority of antenna Chls absorb at 670-690 nm, some absorb 

at even longer wavelengths than the strongly coupled reaction center dimer, P700.7,8  It 

has been shown that these “red antenna states” are localized on aggregates of Chls 

(closely spaced and strongly coupled), rather than on single Chl a molecules with 

peculiar interactions with their protein environment.  Three red antenna states (C708, 

C715, C719) were resolved in case of Synechococcus9 and two (C708 and C714) in case 
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of Synechocystis PCC 6803.8,10  Spectral hole burning (SHB) experiments8,9,11 showed 

that the properties of the red-most antenna states of Synechococcus (C719) and 

Synechocystis (C714) PSI are almost identical, suggesting that very similar aggregates are 

responsible for those states, while the difference in the peak wavelength is due to small 

differences in protein environment.  Also, strong electron-phonon coupling, large 

permanent dipole moment change, and large rate of pressure-induced shift of spectral 

holes (lines) indicate that the electron exchange contributes significantly to the excitonic 

coupling of the C714 and C719 aggregates.  Spectral hole burning (SHB) is a powerful 

frequency domain technique for the study of the S1(Qy) excited state electronic structure, 

excitation energy transfer (EET) and electron transfer (ET) dynamics of protein- 

chlorophyll (Chl) complexes at low temperatures.  However, despite its frequency 

selectivity, SHB still probes ensembles of complexes, which are in some sense 

inhomogeneous. This is manifested, for example, by broadening of spectral holes in 

external fields.12  Single photosynthetic complex spectroscopy (SPCS) allows 

investigating the properties of the complexes one by one, therefore removing 

inhomogeneity-related effects.  While significant progress has been achieved in the 

spectroscopic studies of single LH-2 complexes13-19 as well as LH-120,21 and LHC-II22 

complexes, there is only very limited single complex data available for PSI. The only 

work we are aware of is the paper on Synechococcus PSI23 and its derivatives.  

Undoubtedly, the lack of published results is due to the complexity of PSI.  As 

mentioned above, there are almost 300 Chls per PSI trimer (i.e. almost 300 spectral lines 

in a relatively narrow wavelength range).  Further, PSI does not possess the high 

symmetry of light harvesting complexes from purple bacteria, which reduces the number 
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of lines observable in the spectra of those complexes.  Jelezko et al. focused exclusively 

on the red antenna state region of PSI from Synechococcus; their results confirmed that 

the lowest-energy state (C719) is indeed characterized by very strong electron-phonon 

coupling.  On the other hand, their observation of narrow zero-phonon lines near 

711-712 nm, most likely belonging to higher-energy red state (C708) of Synechococcus, 

present in both emission and fluorescence excitation spectra seems to indicate that 

different red antenna states are not connected by energy transfer.  The latter conclusion, 

however, contradicts the fluorescence anisotropy data,7 which suggests that the 

C708→C719 energy transfer in Synechococcus does occur.  It also contradicts our 

observation of the C708→C714 energy transfer for Synechocystis,11 if one assumes, of 

course, that the structures of PSI are similar for the two cyanobacteria.  In this 

manuscript we will describe single complex emission spectra of the PSI from 

Synechocystis.  As mentioned above, Synechocystis PSI possesses two different red 

antenna states, which makes interpretation of results somewhat easier than in case of 

Synechococcus. [Note that the authors of some works (ref. 24 and references therein) 

were unable to resolve all the red states distinguishable with the SHB and continued to 

use smaller number of red pigment pools in their analysis.]  Results presented in this 

manuscript show no support for more than one emitting state, in agreement with SHB 

results,11 indicating that energy transfer does occur from the C708 to the C714 (emitting) 

state.  

 

 

 



www.manaraa.com

 

 

71

Experimental Section 

 
Wild-type trimeric PSI complexes were extracted as described in ref. 8.  The 

concentrated samples from the same batch as used in earlier hole burning experiments8,11 

were first dissolved in buffer (10 mM MOPS, 0.05% β-dodecylmaltoside, pH = 7.0) to 

achieve the OD680 ≈ 0.4 per 1 cm thickness. (That corresponds to Chl concentration of 

approximately 10-5 M, i.e. to trimeric PSI concentration smaller than 10-7 M.)  This 

solution was further dissolved ~1000 times in buffer/glycerol mixture (3:1) and 

spin-coated on a plasma-cleaned sapphire plate yielding a film thickness of less than 1 

μm.  The use of glycerol is not meant to facilitate formation of a transparent glass, but 

merely to adjust the viscosity of the solution for better thin film formation.  We do not 

use polymers for sample preparation since we believe that the photosynthetic complexes 

embedded in dry polymer films are relatively more disrupted than in typical bulk 

experiments.  The sample was quickly placed into the cryostat, providing a cold (< 0º C) 

dark environment, and then frozen to liquid helium temperature in about 20 minutes.  

All sample handling procedures were performed in dim light to avoid sample degradation. 

The optical setup was based on a home-built confocal microscope with Newport 60× 0.85 

NA objective attached to the sample holder inside the cryostat (Janis).  In order to 

reduce sample movements due to temperature expansion, the rod of the sample holder 

was made from fused quartz.  The sample was moved in relation to the objective along 

the objective axis using an electromagnet with two parallel coils, one superconducting 

(for T < 7K) and the other made of copper wire.  Moving the focal spot across the 

sample was achieved by using a scanning mirror.  Excitation was performed with a 

Coherent 699 laser with Exciton LD-688 dye (660-720 nm) and with intra-cavity etalons 
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removed (line width several GHz).  After the adjustment, ensuring that the PSI- 

containing film was indeed in the focal plane of the objective, the mirror was scanned 

while the fluorescence (excited at 675-680 nm) was collected (λ > 700 nm) by the 

avalanche photodiode (Perkin-Elmer, dark count < 25 s-1).  An example of the resulting 

“raster-scan” image is presented in the Figure 1.  Afterwards the mirror was moved to 

positions determined from that image, in order to focus on different single complexes, 

and spectroscopic measurements were performed.  Emission spectra were measured 

with Princeton Instruments PI-MAX II generation intensified CCD camera through 

Omega AELP 700 long-pass filter (and DRLP 710 dichroic mirror) and Jobin-Yvon Triax 

320 spectrometer with resolution of 0.4 nm.  Excitation was typically at 675-680 nm.  

Excitation intensities (adjusted using neutral filters, LOMO) are given in the following 

subsections and in the figure captions.  A short-pass filter (Omega; 3rd Millennium 

SP700) was placed just after the laser power stabilizer (CRI) in order to suppress 

broadband dye fluorescence and thereby reduce background. 

 

Results and Discussion 

 
The bulk emission spectrum of trimeric PSI from Synechocystis (not shown) 

peaks at 720 nm.  This value is similar to those reported in ref. 8 and 25.  No shoulders 

were observed at shorter wavelengths.  Quality of the bulk absorption spectrum was 

checked and the shape of the spectrum was in agreement with that reported in ref. 8 and 

11.  Figure 2A represents the typical low temperature emission spectrum of a single PSI 

complex from Synechocystis.  The spectrum is peaked at 720 nm and is quite broad and 

structureless. (The diagram of the emission band maximums of 27 single complexes is 
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shown in the Figure 2B.)  This is in agreement with the spectral hole burning results8,26 

and indicates that electron-phonon coupling for the emitting (C714) state is very strong.  

Strong coupling (total Huang-Rhys factor S ≈ 2), along with possible light-induced 

spectral diffusion, is the reason why ZPLs belonging to this state are not observable.  A 

similar result was reported for the lowest energy red antenna state of Synechococcus 

(C719).23  However, unlike in ref. 23, we did not observe any sharp lines near 710 nm, 

where direct emission from the C708 state might be expected.  Therefore, we conclude 

that the red antenna states in Synechocystis are connected by efficient energy transfer, in 

agreement with spectral hole burning results.11  At this point it may be asked if the 

above finding suggests that there is actually only one red antenna state in Synechocystis, 

as proposed in ref. 24.  We consider it unlikely. First, as demonstrated in ref. 8 and 26, 

electron-phonon coupling clearly changes across the red antenna absorption band, 

becoming significantly weaker at 706-710 nm (S ≤ 1.2) than at 714-718 nm (S ≈ 2).  

The same is true also for the permanent dipole moment difference between excited and 

ground state.8  We are unaware of a theoretical model that would explain about two 

times variation of these parameters within the inhomogeneously broadened band 

belonging to a single aggregate.  In the case of a (positive) correlation between 

electron-phonon coupling and the peak wavelength for a single lowest state, emission 

from PSI with the lowest state ZPL at 706-710 nm is expected at about 708-712 nm (due 

to weaker electron-phonon coupling, S ≈ 1.2), contrary to single complex spectroscopy 

results presented in this work (See Figure 2B) and to bulk emission spectra.8,25  It is 

interesting to consider the implications of the above discussion to the results obtained by 

Jelezko et al. for Synechococcus PSI.23  The distribution of narrow ZPLs in the 
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fluorescence excitation spectra observed in ref. 23 peaks at 711-712 nm.  Assuming 

weak to moderate electron-phonon coupling,9,23 respective absorption maximum should 

be at 709-710 nm in the bulk spectra, i.e. the lines observed by Jelezko et al. most likely 

belong to the C708 state.  Emission maximum for this state (in the absence of the 

lower-energy states) is expected at about 713-714 nm.  In single complex emission 

spectra the total intensity of the C719 emission (peaked at 730 nm) is much higher than 

that of the C708 emission, although bulk absorption is comparable.  Also, no significant 

shoulder near 713 nm is observed in bulk emission spectra.  Thus, all data suggest that 

emission from the C708 upon high-energy (indirect) excitation is relatively weak (if it is 

present at all).  On the other hand, upon direct excitation (fluorescence excitation mode) 

sharp lines belonging to the C708 state were detectable, even though the setup design did 

not favor the detection of the ~713 nm emission (filter transmitting at λ > 725 nm).  

There are two possible explanations for the presence of narrow C708 lines in emission 

spectra of single PSI of Synechococcus.  In the first scenario, the C708→C719 energy 

transfer is unlikely and upon excitation of the C708 it emits by itself with the yield so 

high that Jelezko et al. were able to detect sharp C708 lines near 711-712 nm in 

fluorescence excitation spectra with a filter transmitting at λ > 725 nm.  Relative 

weakness of the C708 emission upon indirect excitation may be explained by peripheral 

location and/or unfavorable orientation of the C708 aggregate, i.e. energy rarely gets 

transferred from bulk antenna downward to the C708 aggregate.  Thus, in this scenario 

it seems plausible that the C708 state of PSI from Synechococcus originates from the 

B31/B32/B33 trimer, not present in Synechocystis since the histidine residue coordinating 

these chlorophylls is absent.27  Other strongly coupled aggregates on the periphery of 
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the complex are A12/A14, A10/A18, B09/B17 and A33.27,28   However, the site 

energies of these chlorophylls,28 except A14, are incompatible with them being the origin 

of the red antenna states.  Other candidates proposed for the strongly coupled dimers are 

B07/A32, A38/A39 and B37/B38,29 A24/A35 and B22/B34,27 A27/A28 and B24/B2528 

or B02/B03 and A03/A04.29,30  However, these dimers are situated closer to the center 

of the complex and are unlikely to be avoided by energy transfer.  Thus, in this scenario, 

none of the above dimers is likely to contribute to the C708 state.  On the other hand, an 

alternative explanation is also possible, with the energy transfer from C708 to C719 not 

just possible but likely and with the C708 (and C715) state functioning as an emitting 

trap only while the lowest trap is unavailable for downward energy transfer, for example 

while C719 is excited (τfluor ≈ 2 ns).  If the PSI complex was on the edge of saturation, 

then within the collection time of the emission spectra (60 sec)23 many multiple 

excitation events could occur, resulting in the weak C708 emission in addition to the 

strong C719 emission.  Note that Jelezko et al. focused as much as 30 μW on a single 

PSI complex (i.e. about 3 kW/cm2) during their emission spectra measurements.23  The 

latter power density was approximately 600 times larger than used in their fluorescence 

excitation measurements (50 nW).23  Thus, saturation/multiple excitation regime was 

quite likely. Upon both resonant and non-resonant excitation the C708 state more often 

than not transfers energy downward to the C719 state, and emission occurs from the latter 

state, leading to more easily detectable fluorescence at wavelengths longer than 725 nm. 

If this explanation is right, the relative intensity of the C708 ZPLs in the single complex 

emission spectra should depend on excitation intensity.  Research in progress on PSI of 

both Synechocystis and Synechococcus should provide answers to the questions raised in 
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this manuscript.  
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Figure Captions 

 

Figure 1: Image of the thin film containing single PSI complexes (red peaks) obtained 

using avalanche photodiode by varying the orientation of the scanning mirror.  

Complexes were excited with 250 nW at 680 nm and fluorescence was collected at λ > 

700 nm. T = 10 K. 

 

Figure 2: Frame A: Typical emission spectrum of a single PSI complex from 

Synechocystis excited at 675 nm.  Approximately 1.5 μW was focused on the single 

complex and the collection time was 300 seconds.  T = 10 K.  Frame B: Histogram of 

the emission band maximum wavelengths based on the data from 27 single PSI 

complexes.  Excitation was at 675 nm. 
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Figure 1. 
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Figure 2. 
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CHAPTER4. ULTRAFAST VIBRATIONAL EVOLUTION OF 

EXCITED-STATE COUMARIN 153 USING FS/PS  

CARS AS A TRANSIENT RAMAN PROBE 

 

A Paper published in Femtochemistry VII:  

Fundamental Ultrafast Processes in Chemistry, Physics, and Biology* 

B. D. Prince, A. Chakraborty, B. M. Prince, T.-M. Hsin, and H. U. Stauffer 

  

1. INTRODUCTION 

 
The development of techniques to study molecular vibrations with reasonable 

frequency resolution in the femtosecond time regime for excited state molecules has 

opened new avenues of research for the understanding of molecular structure following 

electronic excitation.  Frequency resolution allows one to observe directly the evolution 

of vibrational modes as a function of some relevant time delay without the need to apply 

Fourier Transform techniques or to separate complicated beat patterns to determine pairs 

of involved modes.  Here, vibrational evolution upon electronic excitation in coumarin 

153 (C153) is observed using a transient Raman probe technique developed in our 

laboratory that is a variation of time-resolved coherent anti-Stokes Raman spectroscopy 

(TR-CARS).  The technique, named fs/ps CARS, is described in detail elsewhere.1  C153 

____________________ 

* Reprint with permission from Femtochemistry VII: Fundamental Ultrafast Processes in 

Chemistry, Physics, and Biology 2006, 66-69  

Copyright @ 2006 Elsvier B. V. 
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has been extensively studied for its ideal solvatochromic properties upon excitation that 

allow it to be used as a probe for solvent reorganization.  However, despite the wealth of 

work done on the solvation properties, only a few studies have been undertaken to 

understand the molecular changes of the solute molecule upon electronic excitation. 

 

2. EXPERIMENTAL 

 
A Ti:Sapphire laser system generates pulses of ~50 fs duration centered at 800 nm 

with a repetition rate of 1 kHz and power of 2.1 mJ/pulse. Part of the 800 nm pulse is 

used to generate visible pulses at frequencies ω1 and ω2 via optical parametric 

amplification and frequency mixing.1  The residual 800 nm beam is split to generate a 

narrowband (ω3, Δω ~16 cm-1) ps-duration probe pulse centered at 795 nm and a pump 

pulse (ωpump) near 400 nm via frequency doubling.   

The visible fs/ps beams are chosen to be centered at ω1 = 509 nm (19646 cm-1) 

and ω2 = 555 nm (18018 cm-1).  After excitation by ωpump (S1←S0), the ω2 pulse is 

resonant with the ground electronic state (stimulated emission, S1→S0).  ω1 is time 

overlapped with ω2 and repopulates the electronic excited state from the transition caused 

by ω2 (S0←S1) (Fig. 1).  

The three beams associated with the fs/ps CARS probe scheme (ω1, ω2, and ω3) 

are aligned in a folded BOXCARS arrangement, and the spatially-filtered output signal is 

focused into a spectrometer (Ocean Optics, USB-2000, ~0.7 nm resolution).  This scheme 

generates vibrationally resolved spectra of Raman active modes while maintaining sub-

picosecond temporal resolution associated with time-resolved CARS.  The delay of the 

pump beam, which is aligned to be collinear with the ω3 pulse, is adjusted via a 
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computer-controlled translation stage.  The resultant spectra are fit to Lorentzian 

lineshapes, and statistical information (intensity, peak frequency, FWHM, etc.) is 

generated and plotted against pump delay.  

C153 was used as purchased from Exciton and was dissolved in commercially 

available solvents for study in these experiments.  The solvents include the hydrogen 

bonding solvents methanol (MeOH) and butanol (BuOH) and non-hydrogen bonding 

solvent acetonitrile (ACN).  The samples were diluted to a concentration of 8 mM. 

Samples were placed in a 220 μm thick rotating home-built cell to ensure the sample is 

refreshed between laser shots. 

 

3. RESULTS AND DISCUSSION 

 
Figure 2 displays data typical of our experimental setup.  The excited state spectra 

(top graphs) are generated at a fixed excitation pump pulse delay (~30 ps for Fig. 2) and 

have been corrected to remove signal resulting from the ground state (lower graphs).  The 

evolution of the Raman vibrational spectrum from ~1000-2000 cm-1 is monitored with 

the excitation pump delay and evolution of the modes can be followed within the time 

resolution (~100 fs) of our experiment.  At long delays (~15 ps), the two solvents differ 

considerably in the peak position of the mode nearest 1700 cm-1.  In MeOH, the position 

is detected at approximately 1671 cm-1, while in ACN the position is near 1690 cm-1.  

The focus of the results here will be on the peaks denoted as “A” and “B” in the top 

panels of Fig. 2.  

The 1584 cm-1 frequency (Fig. 3) shows some time dependent shift in MeOH, but 

this shift is either absent in ACN or considerably faster than the time resolution of this 
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setup.  To determine whether this time dependent evolution is related to solvent response 

or to simple molecular evolution, another solvent (butanol) was chosen whose solvation 

dynamics are considerably slower than the two studied thus far.2  The frequency 

evolution in BuOH is similar to that in MeOH but on a considerably slower timescale 

(3.6 ps vs. ~20 ps).  This suggests that this frequency is related to the evolution of a 

longer term timescale of solvation.  According to previous work by Maroncelli and co-

workers, the solvation dynamics of C153 in ACN occurs considerably faster than MeOH, 

which in turn occurs faster than BuOH.2  Further studies on the nature of this shift are 

currently under way in our laboratory. 

Previous work on coumarin 102 (C102), similar in structure to C153, has defined 

the free C=O stretch in the region of 1730-1740 cm-1 in the excited state.3  Thus it is not 

expected that the excited state mode observed near 1670 cm-1 in the alcohols and near 

1690 cm-1 in the ACN solution is the direct C=O stretch; however, it is potentially a 

combination mode involving the skeletal motions and a C=O stretch component.  Kiefer 

and coworkers have calculated and assigned the modes of coumarin 152 (C152), which is 

closely related to C153, in the ground state and compared to experimentally measured 

Raman spectra in solid and liquid phases.4  A ground state mode observed at 1603 cm-1 

contains a C=O stretch component in C152.  This agrees with the slight difference 

observed in the solution phase for this mode in the ground state in our measured C153 

spectra (1599 vs. 1603 cm-1, Fig. 2, bottom panels).  Thus, it is expected that the excited 

state the mode near 1690 cm-1 has some relationship to a C=O stretch and further details 

regarding the behavior of this peak will be addressed elsewhere. 
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Figure Captions 

 

Figure 1: Left: Experimental pulse scheme utilized in this fs/ps CARS experiment.  An 

initial pump beam excites population from S0←S1, where two broadband time overlapped 

beams ω1 and ω2 prepare population in excited state Raman vibrational modes after some 

time delay.  A final ps narrowband probe beam ω3 then probes population and a fourth 

wave is detected.  Right: Chemical structure of C153 and emission of C153/MeOH upon 

400 nm excitation. 

 

Figure 2: Ground (bottom) and excited state (top) fs/ps CARS spectra of C153 in two 

solvents: MeOH (left) and ACN (right). Solvents are noted with the “*” symbol.  

Particular attention is spent on “Peak A” and “Peak B” in this experiment.  Excited state 

spectra are generated with the pump pulse fixed at a long time delay (tens of ps).  Note 

the large frequency difference of “Peak A” in both solvents. 

 

Figure 3: Central peak frequency evolution of “Peak B” (~1584 cm-1) in the excited state 

spectra of C153 in three solvents.  The evolution of this mode appears to be solvent 

dependent rather than purely molecular in nature.  The timescales of evolution fit well to 

single exponentials and appear to be related to slower timescales of solvation. 

 

 

 

 



www.manaraa.com

 88

 

Figure 1. 
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Figure 2. 
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Figure 3. 
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CHAPTER 5. SINGLE MOLECULE REACTIONS IN LIPOSOMES 

 

A paper submitted Journal of the American Chemical Society 

Tse-Ming Hsin and Edward S. Yeung 

 

Abstract 
 

To eliminate any potential influences from surfaces, orientations and steric effects, the 

reaction of single alkaline phosphatase molecules from bovine intestinal mucosa is studied inside 

liposomes.  Fluorescent images of individual TOTO-3-labeled proteins in the liposomes provide 

direct proof of having one and only one enzyme molecule in each reaction.  Electrofusion of the 

enzyme-containing liposome with the substrates-containing liposome initiates the enzymatic re-

action.  After incubation, the products of the reaction are quantified by calibration against lipo-

somes with known concentrations of fluorescein to reveal the reactivity of individual protein 

molecules.  Individual molecules of the enzyme show a wide range of activities which span 

from tens to several hundreds of molecules/second.  The distribution of reaction rates of these 

molecules is non-Gaussian and appears to contain two maxima plus a few molecules of higher 

activity.  The heterogeneity in activity indicates structural variations of the protein. Besides 

glycoforms, phosphate-induced structural change at the active site of this enzyme is one of the 

major reasons which account for the ~20-fold variation in activities. 

Introduction 

 

In the early 1850s, scientists started to study the kinetics of catalytic reactions of bio-

molecules.1  For more than a century, chemical reactions are always studied on ensembles of 
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molecules.  Important parameters such as reaction rate and rate constant, both statistical con-

cepts, were then formulated.  With the advancement of instrumentation, scientists can now 

study reaction kinetics2-7 and dynamics8,9 at the level of single molecules.  Information such as 

the stochastic behavior of molecular reactivity is no longer hidden behind bulk experiments.  

For example, detection of single-molecule activity of lactate dehydrogenase3,4 and alkaline 

phosphatase5,10 have been reported.  The fluorescent products of single enzyme molecules can 

be detected by laser-induced fluorescence in a narrow capillary after electrophoretic migration.  

The activation energy and rate constant for individual molecules are thus characterized.  

In order to mimic biochemical transformations in living systems, biomolecular reactions 

have also been carried out in the “artificial cells”—liposomes, which are vesicles with mem-

branes composed of lipid bilayers.11-15  The artificial vesicle creates a lipid boundary which 

provides a cell-like environment for biomolecules.  In these studies, liposomes also serve as ul-

trasmall biomimetic containers for the reactants.  Several manipulation techniques such as elec-

trofusion,11-13 electroinjection14, 15 and light-induced fusion,16 have been used to initiate the 

reactions.  Various types of reactions such as intercalation of dye and DNA molecules,13 cata-

lytic reactions of enzymes,14,15 and hydrogel formation by reacting a polymer with metal ions17 

have been reported. 

Here we demonstrate, for the first time, the reaction of single enzyme molecules in lipo-

somes.  The enzyme, alkaline phosphatase (ALP), is confined in a vesicle and the substrate, 

fluorescein diphosphate (FDP), is confined in another one.  The contents of the liposomes are 

brought together by electrofusion.  The single-molecule enzymatic reaction produces fluo-

rescein (F) molecules, which are detected by fluorescence microscopy.  The presence of one 

and only one enzyme molecule is confirmed by direct observation and the reaction rate is deter-
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mined accurately with the aid of calibration standards.  Unlike previous reports, the enzyme 

molecule is kept in solution and away from the walls of the container throughout the reaction. 

 

Experimental Section 

 
Chemicals and Materials. Trizma base, alkaline phosphatase from bovine intestinal 

mucosa, magnesium chloride, and phosphatase inhibitor cocktail 1 were obtained from Sigma- 

Aldrich (St. Louis, MO).  Fluorescein diphosphate, silicone isolator, and TOTO-3 iodide were 

obtained from Invitrogen (Carlsbad, CA).  Chloroform and methanol were purchased from 

Fisher Scientific (Pittsburgh, PA).  Soybean L-α-phosphatidylcholine (Soybean PC) was ob-

tained from Avanti Polar Lipids (Alabaster, AL).  Slide-A-Lyzer analysis cassettes and Halt 

phosphatase inhibitor cocktail were purchased from Pierce (Rockford, IL).  Amine-coated cov-

erslips were purchased from Telechem International (Sunnyvale, CA).  PVDF membranes 

(1,000,000 MWCO) was obtained from Spectrum Labs (Rancho Dominguez, CA) 

Liposome Preparation and Protein Labeling.  Soybean PC liposomes were prepared 

by the rotary evaporation method.11-13,18  Typically, 15 µL of 133 mM soybean PC, 985 µL of 

chloroform, and 100 µL of methanol were mixed with 2 mL of aqueous solution containing the 

molecules of interest.  The mixture was heated to 41 ºC (Precision, Model 281) under reduced 

pressure (Brinkmann, Model B-169) and the organic phase was removed in 2-3 min.  The 

aqueous phase then became cloudy and liposomes were formed.  The cloudy solution was dia-

lyzed extensively to remove reactants outside of the liposomes.  The intracellular buffer for 

both FDP-containing and ALP-containing liposomes was 10 mM Trizma base and 1 mM MgCl2 

(pH 9.7).  The FDP concentration was 10 µM and the ALP concentration was 25.6 pM for the 

single-molecule experiments.  For protein labeling, TOTO-3 iodide was used to label alkaline 
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phosphatase molecules.  TOTO-3 (solution in DMSO) was first diluted 100 times by the buffer 

mentioned above. 32.6 µL of the 100-fold diluted dye solution was mixed with 46.6 µL of 2.2 

nM ALP.  The intracellular buffer was added to make a final volume of 2 mL and the mixture 

was transferred to the round-bottom flask for rotary evaporation.  Both of the absorption and 

emission maxima of TOTO-3 iodide and of fluorescein are separated by ~150 nm.  Therefore, 

the dye-labeled enzymes would not interfere with fluorescence registration of the products. 

Microscopy and Manipulation.  Fig. 1 shows the experimental setup which consists of 

an inverted microscope (Zeiss Axiovert 100 TV, Carl Zeiss MicroImaging, Inc., Thornwood, 

NY), two 3-D translation stages (PT3, Thorlabs, Newton, NJ) for positioning carbon fiber mi-

croelectrodes (Carbostar-1, Kation Scientific, Minneapolis, MN), two visible lasers for fluores-

cence excitation, one near-IR diode laser for optical trapping,11-13,19 and an intensified-CCD 

camera (GenIV, Princeton Instruments, Fenton, NJ).  The 488-nm line from an argon-ion laser 

(2211-10GLYVW, Uniphase, Milpitas, CA) was used to excite fluorescein; the 632.8-nm line 

from a He-Ne laser (NT55-473, Uniphase) was used to excite TOTO-3-labeled proteins.  The 

808-nm beam from the near-IR laser diode (QFLD-808-100S, QPhotonics, Chesapeake, VA) was 

collimated and shaped for optical trapping of the liposomes.  A polychroic mirror 

(FF500/646-Di01, Semrock, Rochester, NY) and a dual-notch filter (NF01-488/635, Semrock, 

Rochester, NY) were employed to work with the lasers.  An oil-immersion 100× microscope 

objective (EC Plan-Neofluar Carl Zeiss MicroImaging, Thornwood, NY) was used for imaging 

and trapping.  

Carbon fiber microelectrodes and optical tweezers were used to manipulate and electro-

fuse the liposomes.11-13  Typically, one floating liposome was trapped by optical force and im-

mobilized on the amine-coated surface.  Fluorescence images of TOTO-3-labeled enzyme 
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molecule inside the liposome were then collected by shining the He-Ne laser onto the vesicle.  

If one was found inside, this liposome (ALP-liposome) was electrofused with another liposome 

(FDP-liposome) to initiate the enzymatic reaction.  Otherwise, a different liposome was trapped. 

Electrical pulses from a pulse generator (Digitimer Stimulator, DS2A, UK) ranging from 10-30 

V with duration 2-10 μs were sufficient to achieve electrofusion. 

A mini reaction chamber for electrofusion and incubation was created by placing a sili-

cone spacer onto the amine-coated coverslip.  After liposome fusion, the carbon fiber micro-

electrodes were removed and another regular coverslip (No. 2 Cover Glass, Corning, Corning, 

NY) was placed on top of the spacer.  The chamber allowed long incubation times (hours) and 

elevated reaction temperatures without drying the droplet.  After incubation, the liposome was 

exposed to the 488 nm laser and the fluorescence signal from the product was registered by the 

intensified-CCD camera. 

 

Results and Discussion 

 
Single Enzyme Imaging and Manipulation in Liposomes.  Single enzyme activities 

have been studied in capillaries and microfabricated vials.3-6  In those experiments, highly di-

luted enzyme solutions were used such that only one enzyme molecule was present in every mi-

crovial or discrete zone of the capillary.  However, proof of the existence of a single enzyme in 

the reaction zone was based only on statistical analysis and dilution factors.  In this work, single 

molecules were labeled by fluorescent dyes and the catalytic reactions were carried out in solu-

tion confined by the lipid membranes of liposomes, which mimic the biochemical reactions in 

living systems and avoids interference from the glass wall of the container. 

In order to verify that only one ALP molecule was encapsulated in the liposome, we took 



www.manaraa.com

 97

images of the liposome-enclosed single protein before electrofusion.  Because all liposomes 

were dialyzed extensively, untrapped enzyme molecules outside the liposomes should be com-

pletely absent.  However, there were still a few cell traumas due to solution transfer that re-

sulted in the release of enzymes from the liposomes.  Fortunately, the very short working 

distance of the 100× oil-immersion objective helped us to distinguish molecules that were in fo-

cus from those that were out of focus.  This criterion prevented us from choosing those 

out-of-focus molecules of free-flowing enzymes.  However, leakage of ALP from the liposomes 

resulted in high background when they react externally and degraded not only image collection 

but also detection limits.  Therefore, we introduced 0.4 µL phosphatase inhibitor to the lipo-

some mixture (20 µL of ALP-liposome and 20 µL FDP-liposome solutions) to suppress reaction 

(and thus fluorescence) outside the liposomes.  

The procedure in each experiment was as follows: (1) collect the bright field image of an 

immobilized liposome; (2) shine the He-Ne laser and record the fluorescence image of the la-

beled protein in this liposome; (3) make sure from the image that only one enzyme is present in 

the liposome, if not, repeat steps (1) and (2); (4) electrofuse the single-ALP-liposome with an-

other liposome; (5) incubate the fused liposome for some period of time; (6) shine the 488-nm 

laser and record the fluorescence image of the fluorescein-filled liposome.  

Figure 2 presents the images of a liposome at different stages.  Fig. 2A shows the bright- 

field image of the single-ALP-liposome.  The light source in Fig. 2A was cut off by a 550-nm 

highpass filter which helped to prevent photobleaching of the TOTO-3 molecules.  The bright 

spot in Fig. 2B represents the fluorescence image of the TOTO-3-labeled single ALP enclosed by 

the liposome.  A comparison between a liposome containing one versus two enzyme molecules 

is shown in the Supporting Information (Fig. S1).  Fig. 2C shows the bright-field image of both 
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the single-ALP-liposome and FDP-liposome before electrofusion.  After initiation of reaction 

by electrofusion, the high-pass filter was replaced by a 670-nm low-pass filter to prevent photo-

bleaching of the products.  The electrofused liposome is shown in Fig. 2D.  Note that the di-

ameter is roughly   23 of that in Fig. 2A because the volume was doubled.  The fusion event 

triggered mixing of the liposome contents and hence the enzymatic reaction proceeded inside the 

liposome.  The degree of mixing of the contents can be evaluated by considering the diffusion 

of reactants.  It is well known that the mean-square-displacement of molecular diffusion is 

given by <x2> = Dt, where x is the displacement of the molecule, D is the diffusion coefficient, 

and t is time.  If the elapsed time after electrofusion is 1 s and the diffusion coefficients of FDP 

and ALP are (estimated) 4.25 × 10-10 and 6.1 × 10-11 m2/s,14, 20 the average displacements of FDP 

and ALP are 21 and 7.8 µm.  In our experiments, the size of the liposomes ranged from 3.3 to 

11 µm; therefore, the contents were well mixed after several seconds.  Compared to the incuba-

tion time, the time for thorough mixing was negligible.  After incubation for 30 min, the prod-

ucts, fluorescein molecules, were probed by the 488-nm argon ion laser and the fluorescence 

image of the fused liposome (Fig. 2E) was collected.  

Single Enzyme Reactivity in Liposome Reactors.  It was reported that up to 99.5% of 

the proteins could be lost due to adsorption to the wall of the glass pipet in electroinjection.14  

In that case, direct measurement of enzyme concentrations will be problematic and true sin-

gle-molecule studies will be difficult.  Unlike electroinjection of liposomes, adsorption of pro-

teins to glass surfaces will not be an issue in electrofusion.  In our experiments, the labeled 

proteins and the substrates were surrounded only by lipid membranes.  Furthermore, from the 

fluorescence images, it is clear that the protein was moving freely inside the liposome and rarely 

came in contact with the lipid membrane.  After electrofusion of the lipid membranes, the re-
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sultant liposome was incubated for a known period of time.  The intensity of fluorescence from 

the fluorescein molecules can be converted into the concentration of products and therefore the 

activity of the single enzyme molecule in the liposome through a calibration curve (Fig. S2 in 

Supporting Information).  The fluorescence intensities in the calibration curve were obtained by 

imaging individual liposomes that contain different (known) concentrations of fluorescein.  

Note that not all fused liposomes produced fluorescent products after incubation.  This is be-

cause one cannot distinguish between a liposome that contains FDP and one that contains no FDP.  

The latter is present in the pool of ALP liposomes as zero-molecule entities, as required by Pois-

son statistics. 

The catalytic reaction of transforming FDP into fluorescein by ALP involves more than 

one step.  First FDP is digested by the enzyme and becomes fluorescein monophosphate (FMP), 

releasing an inorganic phosphate ion (Pi).  FMP can be further digested by the enzyme to pro-

duce a strongly fluorescent product, fluorescein, plus another Pi.  In addition, there are two 

other isomers that may be in equilibrium with FMP.21  If we considered all rate and equilibrium 

constants without omission, the rate law of this enzymatic reaction would be quite complicated.  

Fortunately, the reaction can be treated as a pseudo-first order reaction when the reaction time is 

long.14  In this work, the incubation time was in the order of tens of minutes, which was many 

orders greater than the characteristic time scale.14  As a consequence, this catalytic reaction can 

be simplified as an one-step reaction: FDP ⎯⎯→⎯ALP  F + 2 Pi.  Further, enzymatic reactions can 

be treated as pseudo-zeroth order reaction such that the reaction rate is independent of substrate 

concentrations when the substrate concentrations are large.  In this work, the enzyme concen-

tration in the liposomes was in pM level (single molecule) and the substrate concentration in the 

liposomes was 10 µM, which was 5-6 orders higher than the concentration of enzyme molecules.  
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As a result, it is reasonable to assume that single ALP molecules reach their maximum reaction 

velocity, Vmax, during the incubation time and the reaction can be treated as a zeroth-order reac-

tion. 

Fig. 3 presents the results of single-molecule reactions.  For 30 single ALP molecules, 

the mean activity is 272 s–1 with a standard deviation of 206 s–1.  The broad distribution appears 

to show two maxima centered at 150 and 450 s–1 along with a few high activity molecules.  In 

bulk experiments, we measured the activity to be 168 s–1 (Fig. S3 in Supporting Information).  

The lower value for bulk experiments may reflect loss of enzyme in transferring reagents.  Also, 

the difference in activities between the labeled and unlabeled enzymes was found to be only 4% 

(Fig. S4 in Supporting Information).  Previously, for different buffer systems, single molecule 

studies gave 108 s–1 5 and bulk studies gave 380 s–1 5 and 400 s–1.14  

Several different sources may account for the broad and non-Gaussian distribution.  

Glycosylation of proteins may contribute to heterogeneity.5,22  Glycosylation affects both the 

flexibility and the dynamic stability of proteins and has been shown to cause a 4-fold variation in 

reactivity.22  However, a variation of ~ 20-fold in protein activity (this work and Ref. 3) cannot 

be attributed solely to different glycoforms.  Recent results from reaction-induced infrared 

spectroscopy showed that the binding of Pi to the active site of bovine intestinal ALPs led to a 

distortion of the polypeptide carbonyl backbone of the enzyme.23  These results also explained 

the well-known fact that the phosphate molecules are inhibitors of ALPs.  Therefore, we can 

conclude that the phosphate-induced structural change is another major reason for the broad and 

non-Gaussian distribution of the activities of bovine intestinal ALP molecules. 
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Conclusions 

 
Single-molecule reactions are carried out in liposome reactors.  The use of fluorescent 

marker along with an appropriate substrate allowed us to monitor true single-molecule reactivity 

in a cell-like environment.  The activities of individual alkaline phosphatase molecules from 

bovine intestinal mucosa showed a wide distribution.  Both phosphate-induced structural 

change at the active site and glycosylation are likely to be responsible for this highly heteroge-

neous behavior.  

This demonstration has many potential applications.  The use of the biomimetic con-

tainers allows us to detect single-molecule activity at different intracellular and extracellular 

conditions.  For example, one can incorporate liposomes containers with transmembrane mo-

lecular/ion channels and create a concentration gradient which is very similar to cell environ-

ments to study how biomolecules response to external changes.  In such a system, the kinetics 

and dynamics of biomolecular reactions can be studied at the ultimate low concentration, i.e., 

single-molecule level, without undesirable interferences from other biological cofactors or artifi-

cial containers.  
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Figure Captions 

 
Figure 1.  Experimental setup for single-molecule reactions in liposome reactors.  The pink 

beam (808 nm) from near-IR laser is collimated by a pair of lenses and is used to trap vesicles 

onto the amine-coated coverslip.  The 632.8 nm HeNe laser is used to excite TOTO-3-labeled 

proteins.  The 488 nm argon ion laser is used to probe the products of the enzymatic reactions.  

Two 3-D translation stages are used to position carbon fiber microelectrodes for electrofusion of 

liposomes.  Fluorescence signals are collected by an intensified CCD camera and processed by 

a desktop computer.  M: mirror; BC: beam collimator; DC1 and DC2: dichroic mirrors, PC: 

polychroic mirror; BP: bandpass filter; DC: direct current power supply for short electrical 

pulses. 

 

Figure 2.  Images of liposomes at different stages.  (A) Bright-field image of the ALP-lipo-

some.  (B) Fluorescence images of one TOTO-3-labeled ALP in the liposome.  (C) Bright- 

field image of the liposomes prior to electrofusion.  (D) Bright-field image of the fused lipo-

some. (E) Fluorescence image of the fused liposome after incubation. Bar = 5 µm. 

 

Figure 3.  Histogram of activities of 30 single alkaline phosphatase molecules from bovine in-

testinal mucosa.  Reaction rates were calculated from reaction times and fluorescein concentra-

tions that were obtained by converting the integrated fluorescence signal using Fig. S2 in 

Supporting Information. 
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Figure S1. Fluorescence images of liposomes containing ALP.  Left, one molecule; and right, 

two molecules. 

 

Figure S2. Calibration curve for fluorescein concentrations in liposomes. 

 

Figure S3. Bulk experiment of ALP and FDP.  Reaction condition: FDP = 3.3 µM, ALP = 161 

pM. In 70 s, 1890 nM fluorescein was produced.  

 

Figure S4. Comparison of the activities of dye-labeled ALP vs. regular ALP.  Experimental 

conditions: FDP = 6.6 µM, ALP = 10.9 pM. Yellow triangular dots: labeled enzyme.  Pink rec-

tangular dots: regular enzyme.  The slope indicates the relative activity: 9.7971/9.4304 = 1.039. 
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Figure S1. 
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Figure S3. 
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Figure S4. 
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CHAPTER 6. GENERAL CONCLUSIONS 
 
 

A thorough understanding of molecular properties of different aspects demands 

various probing techniques.  In this thesis, we utilized several optical detection and 

spectroscopic techniques to study not only physical but also chemical behaviors of 

molecules.  Important physical characteristics of molecules such as excitation energy 

transfer rate and structural heterogeneity of guest-host systems were obtained by using 

low-temperature frequency-domain laser spectroscopy; time-domain laser spectroscopy 

offered the dynamic information of molecular vibrations of very short time scale.  Also, 

the marriage of liposome techniques and laser-induced fluorescence provided accurate 

measurements of molecular reactions and revealed heterogeneous nature of individual 

enzyme activity.  In the near future, we can foresee that the combinations of these 

probing techniques will provide new insight and comprehensive information to many 

important biochemical and biophysical problems, such as metabolisms of single protein 

in living cells.  
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